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Mode-coupling theory for the glassy dynamics of a diatomic probe molecule
immersed in a simple liquid
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Generalizing the mode-coupling theory for ideal liquid-glass transitions, equations of motion are derived for
the correlation functions describing the glassy dynamics of a diatomic probe molecule immersed in a simple
glass-forming system. The molecule is described in the interaction-site representation and the equations are
solved for a dumbbell molecule consisting of two fused hard spheres in a hard-sphere system. The results for
the molecule’s arrested position in the glass state and the reorientational correlators for angular-momentum
index/ =1 and/ =2 near the glass transition are compared with those obtained previously within a theory
based on a tensor-density description of the molecule in order to demonstrate that the two approaches yield
equivalent results. For strongly hindered reorientational motion, the dipole-relaxation spectradqortieess
can be mapped on the dielectric-loss spectra of glycerol if a rescaling is performed according to a suggestion
by Dixon et al.[Phys. Rev. Lett65, 1108(1990]. It is demonstrated that the glassy dynamics is independent
of the molecule’s inertia parameters.
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[. INTRODUCTION Waller factors of the arrested glass structure and characterize
its changes with temperature. Comparison of the theoretical
The mode-coupling theoryMCT) for the evolution of findings with molecular-dynamics-simulation data for water
structural relaxation in glass-forming liquids was originally [9,11] and for a system of linear moleculgk0] demonstrates
developed for atomic systems and for mixtures of atoms othat the theory can cope with microscopic details. However,
ions. Detailed tests of the theory have been provided througthe derived equations are so involved that further simplifica-
comparisons of the predictions for the hard-sphere systertions would be required before correlators or spectra could
(HSS with dynamic-light-scattering data for hard-sphere actually be calculated.
colloids, as can be inferred from Rdfl] and the papers The simplest question of glassy dynamics of the rotational
quoted therein. Quantitative tests have also been made llegrees of freedom concerns the motion of a single linear
comparing molecular-dynamics-simulation data for a binarymolecule in a simple liquid. This problem is equivalent to the
mixture with the MCT results for the modf2—4]. A series  study of a dilute solution of linear molecules in an atomic
of general implications of the MCT equations were derived liquid as solvent. For this system, a MCT has been devel-
such as scaling laws and relations between anomalous exp8ped, generalizing the equation for a tagged particle in a
nents describing power-law spectra and relaxation-tim@imple liquid to an infinite-matrix equation for a tagged mol-
scales, which establish some universal features of the dyecule[13]. The equations were solved for a molecule con-

namics[5]. It was conjectured that these results also apply t3Sting of two fused hard spheres immersed in a HES14).

molecular liquids. Indeed, there is a large body of literature,| "€ Validity of the universal laws for the reorientational dy-

which is reviewed in Ref[6], dealing with the analysis of namics was demonstrated. Characteristic differences for the

data from experiments or from molecular-dynamics simula-* PrOc€ss between the relaxation for angular-momentum in-

tions for complicated systems in terms of the universal MCT?er)é r( c: ; l?ewvie:nzswgéfre:driggéi(:evg;grhl et))(plg:;g;?rig.lf_
formulas. These studies suggest that MCT describes son"lugSS Spectroscopy pand for' = 2 by/ depolyarized—light—

essential features of the glassy dynamics for molecular lig- ; : .
uids. Therefore, it seems desirable to develop a detailed mscattenng spectroscopy. The experimentally established

. ' Marge ratio of the a relaxation times for the
croscopic theory also for systems of nonspherical ConStItu_/’=92—reorientational process and the longitudinal elastic
ents. ;

A mode-coupling theory for molecular systems was stug/modulus was also obtaingd4]. These examples show that

ied in Refs.[7—12], where the structure is described by MCT can provide general insight into the glassy dynamics of

tensor-density fluctuations. The basic concepts of the MCfOtatlonal degrees of freedom that goes beyond the contents

: . . of the universal formulas.
for simple systems such as density correlators and relaxation Within the basic version of MCT, the tagged-particle-

kernels have been generalized to infinite matrices. The equar, . civv-fluctuation correlator for wave numbgeconsidered
tions for the nonergodicity parameters and critical ampli- YT . S '
s a function of timet, ¢¢(t), or the dynamical structure

tudes were solved. These quantities generalize the Debyg ) S
factor for frequencyw, S;(w), can be written aspg(t)

=¢g (t/t)) and Sy(w)=S;(wty). Here the functions

*Present address: Mckinsey & Company, Inc., 8053&bhen, (153* (t) and S:; (w) are completely determined by the equi-
Germany. librium structure. This holds for times outside the transient
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regime,t/ty>1, or for frequencies below the band of micro- Il. THE MODEL
SCOp'C.eXC'.tat'OnS‘"t°<l' The subtlet_les_of the trans_lent A system ofN identical atoms distributed with density
dynamics, like the dependence of oscillation frequencies on

mass ratios, enter into the long-time dynamics and the lowd!t positionsr ., k=1,--,N, is considered as solvent. The

frequency spectra via a common time scajeonly. This structure can be described by the density fluctuations for
means that the statistical information on the long-time dy-Wave \gectorsq: pq=Z explq-r,). The structure factof,;
namics is determined up to a scaleby the statistics of the =(|pg|*)/N provides the simplest information on the equi-
system’s orbits in configuration space rather than by the orl—'b”um. d|str|but|0_n of these particles. Here - -) Qenotes
bits in phase space. The glassy dynamics as described nonical averaging for temperatuTeBe(Eause of isotropy,
functions like$3(t) or Sy(w) deals with the probabilities of Sq ONIY depends on the wave numbzgs |al. The Omstein-
paths through the high-dimensional potential-energy landZ€"Mike equationS,=1/[1-pcy], relatesS, to the direct

scape. The complicated dynamics on microscopic time Scale%orrelati(_)n_functiomq - The structural Qynamics .is described
is irrelevant in the long-time regime: it merely determines & statistical manner by the normalized density correlators

— - * - .
the scalet, for the exploration of the configuration space. ¢q(t) ={pg(1)* pg)/NS;. They are real even functions of

. - d i . et >
The cited results of the MCT for simple systems and mix-'imoe (ltt;;]d:gggt t_he |/n\|/t|_al isb?r:]:\gz:zq(:])o_nin éi(sﬂgtr)sion'
tures[5,15,14 are not valid for the mentioned theories for - q=Av/\Sq P P ’

molecular systemjs7—11,13,14, which imply isotope effects \ljv;hvrl:]Bz;rs/sTn Eize(;\]otes the thermal velocity of the particles
for the glassy dynamics. A change of the mass ratio of the A rigid molecule of two atomsA and B shall be consid-

molecule’s constituents shifts the center of gravity, and the - .
mode-coupling coefficients are thereby altered. This leads t8red as solute. Lerta,azAaor I% denote the position vectors
shifts of the glass-transition temperature, the particle’s localof the atoms, so that =[r,—rg| denotes the distance be-
ization lengths, and the like. In this respect a syste’A®  tween the two interaction sites. Vec®s (r ,—rg)/L abbre-
molecules would behave qualitatively different than/s  Vviates the axis of the molecule. i, denotes the mass of
mixture. There are no experimental observations demandingtoma, the total mas$ =my+mg and the moment of in-
that the long-time dynamics is independent of the inertigertia I =mamgL?/M determine the thermal velocitiesr
parameters of the molecules. But we consider the specifiedt VksT/M andvg= VkgT/I for the molecule’s translation
isotope effects as artifacts of the approximations underlyingind rotation, respectively. Let us introduce also the center-
the so far studied extensions of MCT. This critique and theof-mass positiof c= (Mar o+ Mgrg)/M and the coordinates
formidable complexity of the theories based on the tensorz, of the atoms along the molecule axigi=L(mg/M),
density descriptions serve as a motivation to search for amg=—L(ma/M). The position of the molecule shall be
alternative approach describing the glassy dynamics of mosharacterized by the two interaction-site-density fluctuations
lecular systems. An alternative MCT was proposed by Ka-

wasgki[l?]. B_ut so far, nothing is known abom_Jt the solytion.s p2= exp(iti- Fa), a=A or B. (1)

of his equations nor the results concerning the inertia- 4

parameter issue. In this paper the suggestion of Chong a

Hirata[18] will be followed, and the MCT will be based on nﬂ1e two-by-two matrixw, of static fluctuation correlations

b_, ax by : .
the interaction-site representation of the sysfés 20 wg —<Pa Pa> is given by
The description of a molecular liquid by interaction-site
densities is inferior to the one by tensor densities. The corr- w3b= 5%+ (1—62%)jo(qL), (2

elators of tensor densities can be used to express those of
interaction-site densities but not vice versa. Interaction-sit§vhere here and in the followinf,(x) denotes the spherical
theories also have difficulties handling reorientational CoIrBessel function of index’. The solute-solvent interaction is

elators. Therefore, it is a major goal of this paper to showyegcribed by the pair-correlation functidnﬁ=<p’5p§>/p,
that the indicatecd hocobjections against a MCT based on a4

an interaction-site representation do not fully apply if theWhich is expressed by a direct correlation functigi19]
theory is restricted to a parameter regime where the cage
effect is the dominant mechanism for the dynamics. To pro-
ceed, the same dumbbell-molecule problem shall be studied,
which was analyzed previous|it3,14).

This paper is organized as follows. The basic equations The dynamics of the molecule shall be characterized by
for the model are introduced in Sec. Il. Then, the MCT for ayne interaction-site-density correlators
diatomic molecule in a simple liquid is formulated in Sec.
[ll. The major problem is the derivation of formulas for the
mode-coupling coefficients. This will be done within the
Mori-Fujisaka formalism, and the details are presented in
Appendix B. In Sec. IV, the results of the theory for the These are real even functions of time obeyifg°(t)
dumbbell in a HSS are discussed. The findings are summa= Fga(t). They shall be combined to a two-by-two-matrix
rized in Sec. V. correlatorF,(t). Its short-time expansion can be denoted as

h= qub) w3ch. ®

FE°(0)=(p5(D)* p)- @
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1
Fq() =wq—5023gt*+ O(|t]*). (5)

The continuity equation readﬁi‘: id- f: where the current
fluctuation isfg=5ap3, with v2 denoting the velocity of
atoma. Therefore, one getsgb=<(ﬁ~fg)*(ﬁ-fg)>/q2. The
result splits into a translational and a rotational pagt Jg
+J§, where[21]

2,,,ab

Tab__
Jq =vTWg

(6a)

2
Jsab:sz(§zaZb>{5ab+(1— 8*)lio(al) +i2(qL)1}-
(6b)

Let us denote the smatj-expansion of the density corr-

elators in the form

Fab(t)=1- %qzcab(tHO(q“). %)

The diagonal elements of the symmetric mattii¢) are the
mean-squared displacements

Sr2(t)=([ra(t)—r4(0)1?)=C3(1), (8a)

while the off-diagonal elements can be related to the dipole [PC(t)P]NN=26r2(t)+L?,

correlator as

Cy(t)=(e(t)-e)={CAB(t)— 3[CAA(t)+ CBB(1)]}/L2.
(8b)

PHYSICAL REVIEW E3 011206

The transformation matri®=P~! reads
1 /1 1

P: -
1 -1

V2

It diagonalizes the matricew, from Eg. (2) and J, from
Egs. (6):

(PwgP) Y= 8%w,(q),

. (11b

(119
(11d

w,(@)=1=]o(qL),
(PIPYY= 87w, (),

Rpy\ Xy _ o 1 21 21 =T H
(PJP)Y= Y zvrl {1+ [o(aL) +ia(aL)]}, (11

wherex,y=N or Z. Also, the matrix of density correlators is
diagonalized. Introducing the normalized correlatcb?gt),
one gets

BX (1) =(px(q,)* px(Q) ) W(Q),

[PFy(1)PT¥=8Y¢g(t)wy(q).

The mean-squared displacements are equal and shall be de-
noted by r?(t)=dra(t)=4r3(t), so that Eq.(8c) reads
Sr2(t)=6r&(t) + (1/2)L[1— C4(t)]. The matrixC(t) is di-
agonalized:

(12

[PC(t)P]%%=—L2C4(t).
(13

In Appendix A we show how the correlation functions in
the interaction-site representation can be expressed in terms
of the ones in the tensor-density representation.

The mean-squared displacement of the center of mass can be

expressed as

et =([re(t)—re(0)1%)
=[Madra(t)+mgdra(t)/M+(21/M)[C4(t)—1].
(80)
Expanding Eq(5) in q yields the initial decay
C(t)=Cy+3J,t2+O([t[3). 9)

Here the initial valueC, is due to the expansion of EQ),

while the prefactor of thé? term is due to the zero-wave-

number limit of Eqs.(6):

2
J3P=p2+ 127,72, .

CP=L7(1-6"), 3

(10

For symmetric molecules, one gets,=mg=M/2, |

=ML?/4, andzy=—zg=L/2. In this case, there are only

two independent density correlators, sife&(t)=Fg?(t).

It is convenient to perform an orthogonal transformation to

fluctuations of total number densitieﬁ,(ﬁ) and “charge”
densitiesp,(q):

(@) =(pg*p)N2, x=Norz.  (l1a

Ill. APPROXIMATIONS
A. The solvent-density correlator

The density correlator of the solvent is needed to formu-
late the equations for the probe molecule. This quantity is
discussed comprehensively in the preceding literature on the
MCT for simple system$22]. Let us note here only those
equations that have to be solved in order to obtain the input
information for the calculations of the present paper. First,
there is the exact Zwanzig-Mori equation of motig20]
relating the correlator for density fluctuatiofg(t) to the
correlatormg(t) for the force fluctuations:

t
T hg(1) + Qg (1) +Q§f0dt’mq(t—t’)at, $q(t')=0.
(14)

Second, there is the approximate expression for kemgét)
as mode-coupling functional

mq(t):]:q[d’(t)]- (153

The functional 7, is rederived as EqB11) in Appendix B.
The wave numbers are discretizedMovalues with spacing
h: g/h=1/2,3/2; - - ,M —1/2. Then¢(t) and similar quanti-
ties are to be viewed as vectors Mf componentsp(t), q
=1,---,M, and the functional is
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trivial. In this case, the solvent properties enter via the

fq[f]ZKE Vakpfifp- (15D Debye-Waller factorsf,, which renormalize the coupling
P coefficientsV§}, in Eq. (18b).
Third, Egs.(14) and (153 imply the equation for the long- Let us specialize to symmetrig mol_ecules. Multiplying
time limit o= q(t—): Eqs.(l?)—(;g) from left and right withP given by Eq'.(llb)
and insertingl=PP between every pair of matrices, all
fo= Tl F1{1+ T[]} (16) equations are transformed into diagonal ones. Thus, there are

two equations of motion,
For the liquid state, there is only the trivial solutiép=0. .
The glass is characterized b_y a nonergodicity parameter 0 ¢9t2¢x(t)+QX2¢X(t)+QX2f dt' mX(t—t")d, $X(t") =0,
<fy<1, which has the meaning of the Debye-Waller factor d 4 9 Jo q a
of the arrested structure. At the liquid-glass transition, the (20)
long-time limit of the correlator changes discontinuously x=N or Z.

from zero to the critical valuég>0. o oy . .
The two characteristic frequencids;, which specify the

initial decay of the correlators by<j>§(t)=1—%(()gt)2

B. The solute-interaction-site-density correlators
y +0(]t]®), read

For matrices of correlation functions as defined in &g,

the Zwanzig-Mori formalism also leads to an exact equation N2 , 1 5
of motion[20]: Qg =(vr0)"+ 5(vela)

atqu(t)"‘QéFq(t)+ng;dt,mq(t_t,)&trFq(t,):O X[1_10(q|—)_JZ(qL)]/[1+JO(qL)]1 (216‘)

1 . .
(179 0= (v10)*+ ol 1+]o(al) +j2(qL)]
From the short-time expansion together with Eg), one 5 )
gets X(qL)*[1=jo(gL)]. (21b
2_ -1 Th laxati k I b itt n(t
Qq—ququ _ (17b) e relaxation kernels can be written as(t)

=Fal¢*(1),¢(t)], where Eq.(B17) gives
The right-hand sidérhs) of this equation is a product of two

symmetric positive definite matrices. Hence it can be written XIEX F 2 f dk - o2
as the square of a matrf, . Splitting off this matrix before Fol T 11=[wx(a)/a"] 2(277)3(q p/q)
the convolution integral is done for later convenience.
The difficult problem is deriving an approximation for the X Wiy k)pSch(p)zfﬁ ~fp. (229

matrix mq(t) of fluctuating-force correlations such that the

cage effect is treated reasonably. The result,(B47) from Herep=q—k, andcN(p) = \/EC/S: \/icﬁ. The above speci-
Appendix B, can be formulated as mode-coupling functionakieqd discretization of the wave numbers yiel#& as poly-
Fq: nomial

mg>(t) = FLF (1), ¢(D)]. (183 e e
K a ]-'é[fx,f]=[wx(q)/q2]; Vi hi T, (22D
After the discretization of the wave numbers as explained P
above,F, reads One gets for the nonergodicity parametdfs= ¢y (t— )
= (Fg™ = Fq™)/wy(q)

FaTf1=a722 wi> VST, 18
GTTI=a 22 Wi ValoT, (18D fX= FXP AL+ FX ) (23)
The preceding equations are matrix generalizations of the There is no coupling between the fluctuations of the total
MCT equations for the tagged-particle-density correlatordensity and those of the charge density. The mathematical
¢§(t) in a simple liquid[23]. structure of the two sets of equations forN and x=2,

The equation for the nonergodicity parameters of the moltespectively, is the same as the one studied previously for the
ecu|e,ng°°:ng(t_>oo), can be obtained from Eq¢l7a  density correlatokg(t) of a tagged particle in a simple lig-

and(18a. It is a matrix generalization of Eq16): uid [23]. For the density dynamics one also finds the small-
asymptote for the frequend@y?=(v+q)?+0(q*), reflect-
Fq=FqlF" T {1+ fq[Fw,f]}‘lwq. (19  ing free translation of the probe molecule. There is also the

q~ 2 divergency of the mode-coupling coefficientsﬁi;‘,
If the solvent is a liquid, i.e., if;=0, one getst:f;:O. Ifthe  which implies the approach towards unity of the Lamb-
solvent is a glass, the long-time Iimilégbco can be non- Maossbauer factor for vanishing wave numbé}‘;ozl. For
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the charge dynamics, one gets a nonzero smhlhit for the m,(t)=F[ ¢*(1),4(1)], x=N or Z, (293
frequency characterizing free rotatnﬁéw 20R+ 0o(g?).

The mode-coupling coefficients do not diverge fp~0, . * N2 e

since 6v,(q)/(Lg)2—1. Therefore, the nonergodicity pa- Al ’f]:axfo dkK*pSeM(k) 2w, (k) fi fi, (29D
rameter for the variablez(ﬁ,t) approaches a limit smaller

than unity:f7_,<1. where ay=1/(67%) and a,=L?/(727%). Equations(28)

and (29 for the dipole correlator have the standard form of
C. The dipole correlator and the mean-squared displacements the MCT equation. Ifcj)g(t) approaches zero for large times,
the same approach towards equilibrium is exhibited by
: t). If the solvent is a glassf,>0, and if the charge-
lat t t f th - | 1
relator C4(t) and two of the mean-squared displacemen Sdensny ﬂuctuatlons¢q(t) exhibit nonergod|c behaworfZ

5r§(t) for a=A, B, or Cis equivalent to the knowledge of
the three independent elements of the symmetric matr|x>0 the /= 1-reorientational correlator also exhibits noner—

C(t). Using Eq.(7) and expanding Eq17a for small wave godic dynamics:

According to Eqs(8), the knowledge of the dipole cor-

numbers, one gets Coltoe) == FATZ L+ FATA AT (30
t
afC(t)—D+Q§C(t)+Jof dt'm(t—t")d, C(t")=0. Parametelf1 is the long-wavelength limit of§ discussed in
0 (24) Eq (23) fq~>0 fl

This exact equation of motion fa€(t) has to be solved with D. The quadrupole correlator
the initial condition from Eq.9). The frequency matrix is The quadrupole correlatocz(t)=(3[é(t)~é]2—1>/2

obtained as zero-wave-number limit from Hg7b cannot be extracted from the correlatd§”(t) with a,b

—2Za =A or B. But let us consider a linear symmetric triatomic
) (25) molecule. The third atom, labeled, has its position in the

centerfc. The preceding theory can be extended by adding
Equation (24) implies €(0)—D+Q2C(0)=0. Thus, one asa third variable the fluctuatiop§= exp(qg-r¢). The basic

gets from Eq.(9) D=6JO+Q§CO, i.e., Dab= 60-2|-+ 2UZR(ZA quantities are now the elements of thex3 matrix cor-
+25)2,. relator, defined as in Eq4) with a,b=A, B, or C. The

The MCT approximation for the kerneh(t) is obtained correlator formed W|thpQ(q) Pg +p*—2p~ is a linear

by combining Eqgs.(170) and (18b) and taking the zero- combination of the nine functlorﬁab(t) An expansmn for
wave-vector limit. With Eq(B17), one finds small q yields

m(t)=FF(1), ()], (268

Zp
=(2v2/L)( .
R Zg —1Zp

- - 5
(pol@)* pol@)=1gg(aL)| C [ (1) + —} +0(q°).

FaTi]= f dkidpS.ciclTas, .  (26b) (31)

In this case,C,(t) can be obtained in a manner similar to

Again, the theory simplifies considerably for symmetric that discussed above f@(t). A diatomic molecule can be
molecules. In this case, one can transform B4) as ex- considered a special mathematical limit of a triatomic one.
plained in connection with the derivation of E@0). Using ~ Hence, there s, in principle, no problem obtainiGg(t)

Eq. (13) one gets the exact equation of motion for the meanWithin a theory based on an interaction-site description. Mo-

squared displacement tivated by this observation, an auxiliary s@@eshall be intro-
duced[24,25 andpg will be used as the third basic variable.
t q . .
&fﬁré(t)—6v$+v$j dt’mN(t—t’)atréré(t’)=0, However, a complete theory W!th>63 matrices shz_ill not l_ae
developed. Rather, some additional approximations will be

(27 introduced so thaC,(t) is obtained as a corollary of the
) o o ,  above-formulated closed theory.
to be solved with the initial behavioor c(t)=3(v+t) The quadrupole correlator can be written as the supall-
+0([t[?). Similarly, one obtains for the dipole correlator |imit of a correlation function formed with tensor-density
, , L[t fluctuations defined in Eq(Al) for go=(0,0g): C,(t)
‘9tCl(t)+Zchl(t)+ZURfodt’mz(t—t’)3trC1(t')=0, =limq_o(p3(do,t)* p3(do)). Therefore, an exact Zwanzig-
28) Mori equation can be derived as usual:

to be solved with the initial decayC,(t)=1—(vgt)? 2C (1) +602C-(1)+6 zftdt’ Rit—t")9.,Co(t') =0
+0(|t|®). The MCT approximation for the kernels is ob- 2(1)+6uRCA(1) + Bug 0 Ma(t =17 Co(t) =0.

tained from Eq.(26b): (32
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The relaxation kernem3(t) is a correlator for fluctuating previous work[14], only the diagonal correlators shall be
forces Fro(q0,t) referring to angular-momentum index  taken in the sum, i.e., the approximation will be used:

=2 and helicitym=0: FRO(t) ~jo(kz) FL (D).
R — i *
my(t) tL'L“o(':Rz(quf) Fro(g0)). (33 V. RESULTS

The time evolution of the fluctuating force is generated byd A é‘ew con%epts _;halL be merll_tior_lc?d |WhiCh were in(;ro-
the reduced LiouvillianZ ' = OLQ, where Q projects per- duced[26] to describe the MCT-liquid-glass-transition dy-

. - = R ) namics. In the space of control parameters, a smooth func-
pendicular top3(qo) and £p3(q,), and the LiouvillianL is b P

defined by o h ion has b h tion o is defined near the transition points, called the
efined byl LA(t) =2,A(t). The notation has been chosen S0genaration parameter. Glass states are characterized by
as to bring the formulas into agreement with those of th

€-0, liquid states byr<0, ando=0 defines the transition

more gener.al theqry [n Ref13]. The proceQUre used _for the hypersurface. Suppose only one control parameter, say, the
theory of simple liquid§26] shall be applied to derive an densityp, is varied near the transition point. Then one can

approximation for the kernel. First, the forces will be ap- rite for small distance parametees=(p—p.)/p.:o=Ce
proximated by the projecti,on onto the /spac_e of the simplesk g | addition toC, the transition point ics crclaracteri’zed
modes contributindg-g,— P’ Fro. HereP’ projects onto the by a time scalé, and by a numbek, 0<\<1. The scald,

space spanned by the pair modes specifies properties of the transient dynamics, xarsl called
ap Sy A _ the exponent parameter. The latter determines a certain num-
ANKP)=pepp/ NS, a=A, B, orC. (343 | B0 the critical exponena, 0<a<1/2, and the von
hweidler exponenb, 0<b=<1. There are two critical
time scales governing the bifurcation dynamics close to the
transition:

The essential step is the second one, where correlations
the pairs are replaced by products of correlations:

(A3(K,p,t)* AT (K',p"))— Sk 055 (PE(D)* pic )

X(pp()* pp)/ NS, .

. . o . . The anomalous exponents of the scales réadl/2a,y
This approximation is done in particular for=0, thereby  —1/231 1/2h. The HSS shall be used as solvent. There is
deriving for the normalization matrix for the pair modes onjy one control parameter for the equilibrium structure,
(A3(k,p)*AP(K',p"))— Sckr Spp Wi Here  w@K)  which shall be chosen as the packing fractiprof the par-
=]jolk(za—2zp)] generalizes Eq(2) to a 3X3 matrix. As a ticles with diameter d, ¢=mpd®6. The distance
result, one gets parameter shall be given by the logarithnof |:

t,=tol|al?, t.=t,B /o], (36)

m5(t) = lim X, (Fra(q0)* A%(K,p)) e=(o— @)l oe=*+10"%. (37)

q—0 kp abcd
—1\abebc The structure factorS; is calculated within the Percus-
X (Wi TR (D) Yevick theory[20]. The wave numbers are discretized to
x(we HYed AdK ) * E 0)). 34b) M =100 values with spacindid=0.4. For this solvent
(Wi (AN (K. P)* Fro(40)) (340 model, results for the density correlators and their spectra
can be found in Ref[27]. The glassy dynamics is analyzed

z - . > in Ref. [22], from which one infersg.=0.516,C=1.54,
andp to the one ovek with k= —p. One obtains the kernel ;\:0_73[5 a]= 0_312\/;:'0_583 alncB =%C.836. Furthermore

Theqg—0 limit is carried out easily, reducing the sum ower

as mode-coupling functional to=0.0236(/v) [15].
w0 Dumbbells of two fused hard spheres of diametégs
mit)=| dk > V3K)F3(t)p(t). (35 =dg=d shall be used as solute. The elongation parameter
0 abe{ABC} {=L/d quantifies the bond length. The solute-solvent-direct-

correlation functions are also calculated within the Percus-
Yevick theory. Within the tensor-density description, the di-
. : rect correlation functiong,(q) have been determined in
(A9) in Appendix A. ab _ Ref. [28]. These results are substituted in the formulas of
The correlatorsp(t) and F\ (1) with a,b=A or B are  Aphendix A, to evaluate the equilibrium structure in the site
taken from Secs. Ill A and Il B, respectively. The theory of rghrasentation. In all summations over contributions due to
Sec. Il C provides the results for the mean-squared displacgz; ious angular-momentum indice§ a cutoff /.,=8 is
ment &r(t). C-Ehe Gaussian approximation shall be usedchosen. It was checked for representative cases that increas-
to evaluateF, “(t)~ ex—gk’a¢(t)]. The two remaining ing the cutoff to/,,=16 does not significantly change the
functions can be expressed in terms of tensor-densityesults to be discussed. The discretization of the various
fluctuations  according to  Eq. (A6):  Fi%(t)  wave-vector integrals is done as specified above for the sol-
=32/ +1)j,(kzy) ¢,o(kOt) for a=A or B. As in the  vent. The results in Secs. IV A and IV B deal with a sym-

Let us restrict the discussion to symmetric molecules. Fo
this case, an explicit expression fg8°(k) is noted as Egs.
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0.56 :

energetically equivalent positiors and —e that Eq. (23)
yieldsf§=0. The dynamics of the charge fluctuations is er-
godic. In particular, the dipole correlator relaxes to zero:
] C,(t—)=0. Phase Il is an amorphous counterpart of a
plastic crystal. For sufficiently largé, steric hindrance for
dipole reorientations is so effective, that the charge fluctua-
tions also behave nonergodically. In this case,(£8) yields
a positive long-time limit 6<f7= ¢5(t—¢). In particular,
dipole-disturbances do not relax to zerG;(t—x)=f,
>0. This phase, lll, is a glass with all structural disturbances
0.50 ' ' ' ' exhibiting nonergodic motion. Phases Il and Il are separated
0.0 0.1 02 03 04 05 by transitions at = {.(¢), ¢= ¢.. With decreasing density,
¢ the steric hindrance for reorientations decreases. Th(®)
increases with decreasirg as shown by the full line in Fig.
FIG. 1. Phase diagram of a dilute solute of symmetric dumbbelll. The transition curve terminates with a horizontal slope at
molecules with elongatioq consisting of two fused hard spheres the largest critical elongatiod.= ¢(¢.)=0.380. Function
immersed in a hard-sphere system with packing fracionThe (o) was calculated before within the MCT based on the
horizontal line marks the liquid-glass transition at the critical pac"‘tensor-density descriptiof29], and the transition curve of
ing fraction ¢.=0.516. The other full line is the curve(¢) of  this theory is added as a dashed line in Fig. 1. The results of
critical elongations for a typé- transition between phases Il and e two theories are in qualitative agreement. It would be
I_II. In phage Il dipole fluctuatior]s of the solute relax to zero for long interesting if molecular-dynamics studies could determine,
times, while they are frozen in phase il. The vallie=c(¢c) hich of the two theories is closer to reality. The asymptotic
=0.380 is marked by an arrow. The dashed line is the corresponcil-(,\jwvS for the transition from phase Il to phase Ill have
ing transition curve calculated in Ref29]; it terminates atzl . . P P!
—0.297. pre\_/lously been described as a tyfpetransition, as can
be inferred from Ref[30] and the papers quoted there.
At this transition, C;(t—) increases continuously with

0.54 I

052 | o,

metric dumbbell withmy=mg=m, and in Sec. IV C the increasing?
molecule withm,=10m, mg=m is considered. %.

Throughout the rest of this paper, the particle diameter is The heavy;l:llflmes_ug) Z'é:] 2 lexr:'b't;r;tlcal noggrgfodm-
chosen as unit of lengtld,=1, and the unit of time is chosen Ity parameterd, " for £=0.80, calculated from Ed23) for

so that the thermal velocity of the solventsis: 1. the quui(j—glass transition poing= ¢.. These quantities are
Lamb-Mossbauer factors of the molecule. The functi‘é}?
can be measured, in principle, as a cross section for incoher-
ent neutron scattering from the solute, provided both centers
There are two control parameters for the system, namelyh andB are identical atoms without spin. As expected for a
the packing fractionp of the solvent and the elongatignof  localized probability-distribution Fourier transform, the
the solute molecule. Figure 1 exhibits the phase diagram‘.éc-versusq curves decrease with increasimg Most re-
Phase | deals with states whepds below the critical value markable are the kinks exhibited By° for wave numbersj
¢¢, i.e., the solvent is a liquid. In this case, the long-timenear 5, 12.5, and 20, and mgc for g near 10 and 17.5. The
limits of the mode-coupling kernels in EqSL8) vanish. All jight full lines exhibit fX° calculated with Eq(A7) from the
solute gorrelators relax to zero for long times, and the.mOI'criticaI nonergodicity parameterf§(q/0) [13]. The results
ecule diffuses through the solvent. Fp& ¢, the solventis  of hoth approximation theories are in semiquantitative agree-
a glass. Structural fluctuations behave nonergodically. In patyent, in particular concerning the position and size of the
ticular, a tagged solvent particle does not diffuse; rather, it ignks. Thef®(q/0)-versusq curves are bell shaped, close to

localized. Since the atoms of the molecule with=dg=d  Gaussiang13]. They enter into Eq(A7) with prefactors
experience the same interaction with the solvent as the so|- (4//2)2=0(¢%), so that the maximum of the contribu-

vent particles do among each other, one expects the molecuilg

to be Nlocahzed as well. Indeed, Eq23) yields for ¢ ¢ increases with’. The separate contributions for differ-
=¢cifg>0.If ¢ \lereases from below to abovegc, the et are shown as dotted lines in Fig. 2. Thus, the kinks are
long-time I|m’1‘t ¢q(t—2) increases discontinuously @ que to interference effects of tHé(q/0) with the intramo-
from zero tofq°>0. Also, the quadrupole correlator exhibits |ecular form factorsj ,(q¢/2). Let us addthat also the
nonergodic dynamicsC,(t—=)=f,>0. The cages sur- | amb-Masshauer factors of the atomt°, are well de-
rounding the molecule cause such strong sterlc*hmdrancgcribed by Gaussians for< 10; in particular, these functions
that quadrupole fluctuations of the orientational veetoan-  do not exhibit kinks. Figure 2 demonstrates for a case of
not relax to zero. In this sense, the staies ¢. are ideal strong steric hindrance for reorientational motion that
glasses. angular-momentum variables faf up to 6 are relevant in

There are two alternatives for the glass. Phase Il dealdescribing the arrested structure, and that the description of
with states for sufficiently small. There is such small steric the molecule by site-density fluctuations properly accounts
hindrance for a flip of the molecule’s axis between the twofor the contributions with/=2.

A. Structural arrest

n from angular-momentum index occurs at some)**
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£=08 §-8)78 = 0347
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FIG. 2. Nonergodicity parametefg® (heavy full lines for the FIG. 3. Results as in Fig. 2 but for small elongations which are
molecule’'s arrested number-density fluctuations=N) and  representative for weak steric hindrance for reorientational motion.
charge-density fluctuationsc€& Z) for the critical packing fraction The relative distance from the transition point between phases ||
¢=¢.. The elongation parametef=0.80 is representative for and lll is ({—{.)/{.=0.347. The heavy full line shows the result
strong steric hindrance for reorientational motion. The light full of the present theory fof=0.512. The light full line shows the
lines are evaluated with EGA7) with the nonergodicity parameters result for{=0.400 based on Ref13].

f(q/0) obtained in Ref[13] from a theory based on a tensor-

density description. The dotted lines show the contributions to Eq. o
(A7) from different angular-momentum index. Here and in the OF €ven minima of the curves. These are the analogues of the

following figures the diameter of the spheres is used as unit okinks, discussed above in connection with Figs. 2 and 3.
length,d=1. Again, these anomalies can be explained as interference ef-

fects between the geometric structure factor&£/2)? and

the nonergodicity parametert®(q/0) according to Eq.

Figure 3 exhibitsfy° representative for weak steric hin- (A7). Let us considef{° for an intermediate wave vector as
drance for the reorientational dynamics. Naturally, the conshown for curves andc in the upper panel of Fig. 4. For
tributions due to the arrest of fluctuations of tensor densitiesmall /, say, {<0.4, the/=0 contribution dominates the
with large/ are suppressed. The contributions f60 and  sum in Eq.(A7), as can be inferred from Fig. 3. Function
/=2 are sufficient to explailhgc, in particular its kink forqg ~ f°(q00) reflects the isotropic part of the arrested fluctua-
near 12.5. Similarly, the contributions fef=1 and /=3
are necessary and sufficient to explé,iﬁ with its kink for q
near 17.5. The dynamics is strongly influenced by precursor
phenomena of the transition from phase Il to phase lll. This
is demonstrated, for example, by the strong decreas§ of 0.5
=f2°, for the result shown in the lower panel of Fig. 3 in ~._ _—¢
comparison to the one shown in the lower panel of Fig. 2. \/_/d
The two approximation theories under discussion yield dif- 0r, . . . .
ferent numbers for the valug. for the transition point. It is
meaningless to compare different approximations for results a
near a singularityl., referring to the same valué. It is ¢ b
more meaningful to compare results for the same relative 0.5 ¢
distance from the critical point,{(-{:)/{., as is done in ) 1 ¢
Fig. 3. Let us mention tha‘tﬁC shown by the heavy and light fé‘
full lines would be somewhat closer, if one had compared 0 — T
elongations yielding the same value fir. 02 04 06 08 1
Figure 4 exhibits critical Lamb-Mssbauer factor;® as a ¢

function of the elongation. The lower panel demonstrates the
transition from phase Il fof <{ to phase Ill for{>{.. For FIG. 4. Critical nonergodicity parametef¥® for the solute as a
strong steric hindrance, sa§=0.8, f;® s rather close t65°  function of the elongation parametérfor the wave numbers
providedq is not too small, sayg>3. For { approaching =3.4(), 7.0(b), 10.6(), 14.2@d), and 17.4€). The arrow marks
Lo, theféC fall belowfg‘c. Most remarkable are the wiggles the transition point from phase Il to phase Ill &t=0.380.

N
l_ch ]
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shown by the dotted lines. Increasiggaboveg., the long-
time limits increase, as shown f@tg(t) for g=7.4 and{
=0.80. Decreasingp below ¢, the correlators cross the
plateau at some timeg, and then decay towards zero. The
decay from the plateat},® to zero is thex process foipg(t).

It is characterized by a time scate, which can be defined,
e.g., by ¢g(7,)=1372. Upon decreasing.— ¢ towards
zero, the time scales; and 7, increase towards infinity in
proportion tot, andt, , respectively, cited in Eq.36). The
figure exemplifies the standard MCT-bifurcation scenario.
For small|¢— ¢¢|, the results can be described in terms of
scaling laws. This was explained in Ref22,23 for the
HSS, and the discussion shall not be repeated here.

One can deduce from Fig. 2 that fo+=0.80 andg=5 the
plateaus for both types of density fluctuations are very close
to each otherfy°~fZ°. The upper two panels of Fig. 5
demonstrate that the dynamics as well is nearly the same,
Bq(t)~¢5(t). This means that fog>4 and for strong
steric hindrance, the cross correlatioﬁﬁB(t) are very

log,,t small. The reason is that the intramolecular correlation fac-
tors j(q¢/2) are small, and thus interference effects be-

EIG. 5. Correlators;ﬁg(t) (solid lineg and ¢§(t) (dashed lings  tween the density fluctuations of the two interaction sites are
for two intermediate wave numbegsas a function of the logarithm suppressed. Coherence effects can be expected only for
of time t. The decay curves at the critical packing fractipnfor ~ smaller wave vectors. For this case, the functions can be
number-density and charge-density correlators are shown as dotteshderstood in terms of their smajlasymptotes, Eq.7).
lines and marked biN andZ, respectively. Only a few solutions of The lower two panels in Fig. 5 deal with weak steric
glass states are shown fg(t) in order to avoid overcrowding the hindrance. In this case, the charge-density fluctuations be-
figure. The distance parametereis (¢ — @)/ o= =10 *. The full  have quite differently from the number-density fluctuations.
circles and squares mark the characteristic tilesndt,,, respec-  The most important origin of this difference is the reduction
tively, according to Eq(36) for x=1, 2, 3, and 4. The unit of time 5§ the mode-coupling verticeg? o relative tOVNk in Eq.
is chosen here and in the following figures such that the therma€22b)_ For small elongations gf’ tphe m0|eCU|e,q’thpe effective
velocity of the solvent reads=1. solute-solvent potentials for reorientations are small. There-

fore, theféC decrease strongly relative f(ﬁ‘c for ¢ decreas-
tions, and hence it is practicallyy independentas shown in  ing towards{., as is shown in Fig. 4. Upon approachig,
Fig. 5 of Ref. [13]). Since jo(q/2)?=1—75(q)?  the a-peak strength ofﬁg(t) gets suppressed relative to that
+O[(q§)4] decreases with increasing the f(’;‘c versus/{ of ¢g‘(t). Within phase II, the charge-density fluctuations
curve decreases too; and the decrease is stronger for targerrelax to zero as in a normal liquid. This implies as a precur-
The f(q20) increase from 0 fot=0 to values near 0.5 for sor phenomenon that the time scafgof the charge-density-
{=1 (as shown in Fig. 5 of Ref.13]). Also, the geometric flyctuation o process decreases relative to the scajeor
structure factor increases strongly with{:j,(q¢/2)*  the number-density fluctuations. Thus, the sngaliehavior
=[(q¢)?/60)*+0O[(q¢)®]. The combined effect of both in- shown in the lower two panels of Fig. 5 is due to distur-
creases causes the increase of tHjéversus¢ curve for  pances of the standard MCT-transition scenario by the
larger{. The resulting minimum occurs for smallérif q is nearby typeA transition.
larger, and this explains the difference between the two The correlatorsC,(t) and C,(t) are shown in Fig. 6 for
curvesb and c. The theory produces the minima, since it the critical pointe= ¢, and for two liquid states near the
accounts for the arrest of tensor-density fluctuations/Afor transition from phase | to phase Ill. Fgr=0.80, the aniso-
=2. tropic distribution of the solvent particles around the mol-

ecule leads to a stronger coupling to the dipole reorientations
B. Correlation functions and spectra near the glass transition  than to the reorientations for the quadrupole, and therefore
Ithe plateau for the former is higher than for the latte,

the correlatorsp(t) and #4(t) for intermediate wave num- >f$. Aleading order expansion of the solutions of the equa-
. L tions of motion(28) and(32) in terms of the small parameter
bers q near the transition from phase | to phase Ill. The c o nall p .
oscillatory transient dynamics occurs within the short-timeC/(t) — T/ leads to the factorization in the critical amphgude
window t<1. The control-parameter sensitive glassy dy-N, and a functionG(t) called theg correlator,C,(t)—f,
namics occurs for longer times for packing fractiansiear ~=h,/G(t). The latter is the same for all correlation functions.
¢c. At the transition pointp=¢,, the correlators decrease It obeys the first scaling law of MCTG(t) = Vlolg=(t/t,)
in a stretched manner towards the plateau valf.gisas for c=0. The master functiong..(t) are determined b.

®

NZ
q

Figure 5 demonstrates the evolution of the dynamics fo
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1.0 mode-coupling functional at the critical point. It obeys the
08 1 \ 1 initial condition () = fS—hat®+O(t?). Functiongg(t)

0.6 1 1\ V\Y 2] can be considered as a shape function ofdhgrocess, and
04 r T ] the result implies the second scaling law of MCT, also re-
02 ! \\F:O‘SO' ferred to as the superpos_ition principlﬁé(t)=3q(t/t;) for

00 | i o—0— [26]. Corresponding laws hold for all functions, as

C@®

08 [\ is demonstrated in detail for the HSS in Reff2,23. In

06 | particular, one gets for the reorientational correlatorsdor
. C0—
04 r
02 X R ] C()=C, (1), T=tit), t,<t, (383
0.0 f S 1
20 2 4 6 810 and this corresponds to thescaling law for the susceptibil-
log t ity spectra
FIG. 6. Reorientational correlator€, (t) for /=1 (dashed X w)=xUw), w=ot,, o<lf,. (38b

lines) and /=2 (full lines) for two elongations,. The correlators
for the critical packing fractionp= ¢, are shown as dotted lines
marked with c,. The distance parameters=(¢— ¢.)/¢. are
—0.01 (faster decayand —0.001 (slower decay The full circles
and squares mark the corresponding time sdalesdt’ , respec-

The initial decay of the master functidd,(t) is described
by von Schweidler’s law,

o1 =~ TV_fC_nLTb T

tively, from Eq. (36). The open circles and squares on the curves CA=f,—h > =0, (393

mark the characteristic time scaleg; andr£ , respectively, defined . . . .

by C/(rg)zfﬁ andC,(7)=fS/2. which is equivalent to a power-law tail of the master spec-
' ' ' ' trum y():

They also describe the dynamics of the solvent in the win-

dow where|q(t)—fgl<1 [22]. In particular, there holds YA(w)=h,sin(7b/2)T(1+b)/w®, w—oo. (39b

g_('t_)=04t_=0.704, so that both correlato&,(t) cross
their plateau at the same timeﬂ=f_t(,. The nonlinear The upper pangl of F.ig.7exhibits theprocess master spec-
mode-coupling effects require, that the correlators approach@ for the reorientational processes b+ 0.80 and for the
zero roughly at the same time. Thus one understands tfémensionless longitudinal elastic modulog_o(t) of the
general differences between the processes, which were Solvent. The latter can be measured by Brillouin-scattering
mentioned in the introduction: the process for dipole re- SPectroscopy. It probes a tensor-density fluctuation for
laxation is stronger, slower, and less stretched than those for O- The von Schweidler law tails describe the spectra for
quadrupole relaxation. This finding is in qualitative agree-frequencies exceeding the positia,,, of the susceptibility
ment with the ones of the theory based on tensor-densitgnaximum by a factor of about 100, as shown by the dashed
representation of the structufd4]. There are, however, lines. Sincef{>f5 and both plateau values are rather large,
quantitative differences between the two approximatiorone understands from the theory for the leading corrections
schemes. The plateadi$=0.905 andf;=0.674 are smaller to Eq. (390 [22] that for decreasing the von Schweidler
than the corresponding values 0.943 and 0.835 found in Refsymptote underestimates the spectrum, and does this by
[14] and the amplitudes; =0.19 andh,=0.40 are bigger |arger values for”'=1 than for/=2. For smaller plateau
than the corresponding values 0.13 and 0.35 calculated prgalues, the von Schweidler asymptote may overestimate the
viously[14]. The times,, characterizing ther process shall spectrum, as is exemplified for the modulus. The lower panel
be defined byC/(ﬂ)=f§/2. They are marked by open of Fig. 7 demonstrates that theprocesses speed up if steric
squares in Fig. 6. The values.=5.21x10°, 72=1.64 hindrance is decreased. As precursor of the transition to
X 10° for x=3 and{=0.80 are smaller than those reported phase Il, the spectrum for the dipole response is located at
in Ref.[14]. The present theory implies a somewhat weakeimuch higher frequencies than that for the quadrupole re-
coupling of the reorientational degrees of freedom of thesponse. Traditionally, dielectric-loss spectra have been fitted
molecule to the dynamics of the solvent than found earlieby those of the Kohlrausch la (t) = A exd — (tB)?]. Such
[14]. This holds also for the small elongatidr=0.43. The fits also describe a major part of the spectra in Fig. 7, as
approach toward the transition from phase Il to phase lishown by the dotted lines. The parametdrand B are ad-
leads to a suppression 6f, as discussed for thbéc in Fig.  justed to match the susceptibility maximum. The stretching
4. The dipole relaxation speeds up for (., as discussed exponents is chosen so that the spectrum is fitted at half
for the lower panels of Fig.. 5. This is reflgcted b)_/ an en'maximum}}(z)max)lz If one denotes the width in lggw at
hancement oh,=1.60 relative to the amplitudes cited for half maximum byW, stretching means that this parameter is
¢{=0.80 but also relative th,=0.49. larger than the valu®Vy=1.14 characterizing a Debye pro-
One can perform lim_,o— ¢q(tt,) = do(t) for the solu-  cess ¢ (T) = exp(-T). The upper panel of Fig. 7 quantifies
tions of Eq.(14), where ¢4(t) can be evaluated from the the general results of the theory for strong steric hindrance:
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FIG. 7. Susceptibility master spect}é(@) of the @ process as
a function of the logarithm of the rescaled frequency: wt, (see
text). Upper panel: curveg’'=1 and 2 refer to the response for the
dipole and quadrupole, respectively, for elongatien0.80. Curve
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FIG. 8. Double logarithmic presentation of the normalized fluc-
tuation spectra of the dipole-reorientatiore processes,
X1 (©) Omax/fSw, as a function ofw/wmay. Here oy denotes the
position of the susceptibility maximum. Following Dixoet al.
[31], the vertical axis is rescaled v ! and the horizontal one by
wi(1+w™ 1), wherew=W/Wy, is the ratio of the logarithmic full
width at half maximumW of the susceptibility peak to the same
quantity Wy of a Debye-peak. The open circles reproduce some of
the dielectric-loss results for glycer@1]. The three full lines from

/=0 refers to the susceptibility master spectrum of the dimensiony,e top are the results faf=0.80, 0.60, and 0.43, successively,

less longitudinal elastic modulug,_,(t) of the HSS. The dashed
lines exhibit the von Schweidler tails, E(B9b). The dotted lines

are fits by Kohlrausch spectng,(w) with stretching exponentg
=0.97, 0.88, and 0.63 chosen for=1, 2, and 0, respectively, so
that the maximum and the full width at the half maximwin

decades of((w) agree with those of”(w). The position of the

susceptibility maximum i$o,,,=0.337(0.927, 2.69 and the width
isW=1.17(1.28, 1.7 for /=1 (2, 0. Lower panel: correspond-
ing results for{=0.43. The stretching exponept the maximum

pOsition wmay, and the widthw for /=1 (/=2) are =0.79
(0.7, ®na=17.5(2.11), andW=1.42(1.57), respectively.

X1(©Ohan) > X5(Onads @max<@max and B1>B,. It quantifies
alio the fourth property cited in the Introductiom,,,
<w%ax. A further general property i8,> ;.

The discussion of power-law spectra is done more conve-

although the upper two curves cannot be distinguished within the
resolution of the figure. The dotted and the dashed lines exhibit the
Kohlrausch fit with the stretching exponeft=0.97 and the von
Schweidler law tail, respectively, for thie=0.80 spectrum.

produced by the MCT results of the basic quantitiggt)
[32]. The rescaled spectrum fdr=0.43 deviates from the
scaling law forw™(1+w™ 1) 10g;o( @/ ®may) =5.

It might appear problematic that the dipole correlator was
calculated within a different approximation scheme than the
quadrupole correlator. But it is not difficult to also evaluate
C4(t) within the scheme explained in Sec. llID for the
evaluation ofC,(t). Figure 9 presents a comparison®f(t)
obtained along the two specified routes. The two results for
the small elongationf=0.43 are close to each other. The
ediscrepancies are mainly due to the 7% difference between

niently in a double logarithmic diagram as shown in Fig. 8

for normalized dipole-fluctuation-process  spectra 1.0

C(@0) @max 5= X (@) 0max/ fS® as a function of o/ wmax- 0.8 |

One notices that there is a white-noise spectrumufdrelow ;3: 061

wmax. The high-frequency wing of the Kohlrausch-law fit 0.4 ¢

decreases in proportion o~ # and underestimates the spec- 0.2 ¢

trum }’1’(3)) considerably. Because of the von Schweidler 0.0 '
20 2 46 810

asymptote, which is shown as a dashed straight line, the
spectrum exhibits an enhanced high-frequency wing. Dixon
et al.[31] made the remarkable observation that their dielec-

log,t

tric spectra could be collapsed onto one master curve if the _ ;-

vertical axis is rescaled bw ™! and the horizontal axis by
w 1(1+w™ 1), wherew=W/Wjy. In Fig. 8 this scaling is
used and the data for glycerol from RE81] are included.
The spectra for molecules witf=0.80 and{=0.60, which

FIG. 9. Dipole correlator$C,(t) for the distance parameter
4 for three elongationg. The full circle and square indi-
cate the timeg, andt, , respectively, from Eq(36). The dashed
lines are calculated from Eq€28) and (29). The plateausf
=0.905 (0.769, 0.37% for {=0.80 (0.60, 0.43 are shown by

dashed horizontal lines. The full lines exhil@t(t) for the same

are relevant for the description of van der Wc_';la_lls systemstates, but evaluated from equations derived in analogy to Egs.
[14], follow the above-mentioned scaling surprisingly well. (32)—(35), and their plateaut =0.907(0.782, 0.402are indicated
This finding appears nontrivial, since the scaling is not re-by full horizontal lines.
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the two plateau valuef; . With increasing/, the discrepan- the previous one with the introduction of matrices. It seems
cies decrease. For the large elongation0.80, the results obvious that the previous results for asymptotic expansions

are practically indistinguishable. hold in a properly extended version. Let us only note the
formula for the long-time decay of the correlators at the criti-
C. Structural relaxation versus transient dynamics cal pointe= ¢ [22,23:

Let us introduce Fourier-Laplace transforms of functions (1) = FZC4 Hy(to /1) 1+ K4 (to/1)2+ O[ (to /1) 2]}
of time, say,f(t). There functions of frequency, sdyw), d a Ao o 0 (44)
are defined with the conventiol{w) =i [;dtexp{zt)f(t), z

=w+1i0. The equations of motiofl.7) with the initial con-  The exponent, mentioned above, can be calculated from
ditions from Eq.(5) are transformed into the mode-coupling functional at the critical point. The same
2 a2 B is true for the plateau valué’%"c, and the amplitudes; and
[@1+ Qgmg(w) JlwFg(w) +wWq] — QgFq(w) =0. (40) Kq- The dependence of the solution from the transient dy-
Within the glass, the long-time limits dF,(t) andmq(t) do namics is given b)_/ t_he single numbgy. Let us anticipate
not vanish, i.e., the transformed quantities exhibit zero-ﬂ;at Eq.(|44) and similar r(IE‘S(;HtS c;m bﬁ exltendeddto a com-
frequency poles. One gets, for exampléEy(w) — — F for plete solution. One concludes that the g assy dynamics is
o 4 determined, up to a scatg, by the mode-coupling function-
w—0, where the strength-F; of the poles follows from ;
Eqg. (19). Continuity of the soll(jtions of the MCT equation of als in Eq.(420.
LT o . : Equations(B11) and (B17) show that the mode-coupling
motion implies that for vanishing frequencies and forvamSh_functionals}' and 72° are specified by the density. the
ing distances from the transition pointay(w) becomes ar- tatic struct a ¢ tctg th d'p t 3{ tion f t'm ¢
bitrarily large. Hence, combinations like +i¢, with con- fha |cslructure c?cth a Iet |rei: cotrrglalc:n uncllt?[qq of
stants¢,, can be neglected comparedmy(w). Therefore, in € solvent, an € solute-solvent direct correfation func-

the region of glassy dynamics, E@0) can be modified to tionscg, i.e., py equmbrlum. quantmes.. They are the same
for systems with a Newtonian dynamics, as considered in

Fa(@) —Mg(0)Wo=i&+omy(w)Fy(w). (41) this paper, and for a model with a Brownian dynamics, as is

to be used for the description of colloidal suspensions. In

Let us assume that this equation has a solution, to be denotedrticular, the mode-coupling functionals are independent of
by F;(w), which is defined for all frequencies, so that it canthe particle masses, m,, andmg. Thus, the glassy dy-

be back-transformed to a functid#, (), defined for allt namics of the molecule in the simple liquid does not depend

>0. Choosingé, properly, Eq.(41) can be written as on the inertia parameters specifying the microscopic equa-
tions of motion. The same conclusions on the glassy dynam-

* e ok _ Pk e Nk g ics, which were cited in the Introduction for the basic version

Fq ()= mg (wq= (d/dt) fodt mg (t=1")Fq (t). of MCT, hold for the model studied in this paper. Let us add

(429 that neither the temperatufenor the interparticle-interaction
potentialsV of the solvent, nor the solute-solvent-interaction

Similar reasoning leads from E{L4) to potentialsV2, enter explicitly into the mode-coupling func-
. ) . ) . Egniz.dggese quantities only enter implicitly vi&, cq,
¢h(t)—m, (t)=—(d/dt)fdt’m (t—t") g (t"). q: Hbq - ) L
a d 0 L a The independence of the glassy dynamics from the inertia

(42b parameters is demonstrated in Fig. 10 for four states of the
. liquid. It is shown that the reorientational dynamics of the
Thes? fo”?u'&t‘ﬁ hEve t‘? be supplemented with the MCT eXaipole does not change for-1 even if the mass ratio of the
pressions for the kernels atomsmy/mg is altered by a factor of 10. The transient
m* (1) = F*(1),6*(1)], m*(t)= *(1)]. dyn_amlcs, which deals W|_th ove_rd_amped I|brat|or_15, exh|b|_ts
o (D=F([F (1,47 (V)] a (D=7l 47 (V)] 420 an isotope effect. There is no fitting parameter involved in
the diagram shown. The scalgdepends neither on the den-
Equations(42) for the glassy dynamics are scale invariant.Sity of the solvent nor on the elongation parameter, and Egs.
With one set of solutiongﬁa‘(t) and Faf (1), the setd)a‘”(t) (42) describe the complete control-parameter dependence of
= ¢ (ut) and F3"(t)=F (ut) also provides a solution for the glassy dynamics.
arbitraryu>0. To fix the solution uniquely, one can intro-
duce positive numbeng, and positive definite matriceg, to V. SUMMARY

specify the initial condition as power-law asymptolés] The MCT for simple systems with a dilute solute of atoms

FE(O(tt) By, ¢E (D) VP -yq,  (t/tg)—0. has been generalized to one with a dilute solute of diatomic
(43) molecules. The derived equations of motion generalize the
ones for atoms in the sense that scalar functions are replaced
The theory of the asymptotic solution of the MCT equa-by 2Xx 2 matrix functions. These generalizations result from
tions for simple systems had been built on the analogue ahe description of the position of the molecule in terms of
Eq. (41) with &, neglected 22]. The present theory extends interaction-site-density fluctuations. The numerical effort re-
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1.0

ence effects demonstrating that the theory accounts for reori-
entational correlations with angular-momentum indgx
=2.

It was shown that thex-relaxation spectra for dipole re-
orientations with strong steric hindrance obey the scaling law
proposed by Dixoret al. [31] within the window and within
the accuracy level considered by these authors. There is no
fitting parameter involved in the construction of Fig. 8,
which demonstrates this finding for the two elongation pa-
rameters{=0.60 and 0.80. Thus, it is not justified to use the
-4 0 4 8 12 cited empirical scaling as an argument against the applicabil-

log gt ity of MCT for a discussion of dielectric-loss spectra.

0.8 r

06 1

C,®

FIG. 10. Dipole correlator€,(t) for a dumbbell of two fused
hard spheres of diametedsand distanceld between the centers
moving in a liquid of hard spheres with diametkfor a distance We thank M. Fuchs, M. Sperl, and Th. Voigtmann for
parameter ¢ — ¢c)/¢.=—10"". The dashed lines reproduce the many helpful discussions and suggestions. We are grateful to
results from Fig. 6 and refer to a symmetric molecule with masse\ | atz and R. Schilling for constructive critiques of our
of the two atoms being equal to the mas®f the solvent particles  anyseript. S.-H.C. acknowledges financial support from Ja-
ma=mg=m. The full lines exhibit the results for an asymmetric pan Society for the Promotion of Science for Research

dumbbell withm,=10m, mg=m. In the main frame the results for broad. This work was supported by Verbundprojekt BMBF
different states are successively shifted horizontally by a factor 10 3-GO5TUM

in order to avoid overcrowding. The inset shows the transient dy-
namics on a linear time axis.
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APPENDIX A: TENSOR-DENSITY REPRESENTATIONS

quired for a solution of the equations is not substantially Following the conventions of Ref&13] and[14], normal-

larger than the one needed to solve the corresponding equgq tensor-density fluctuations shall be used by decompos-
tions for atomic solutes. This holds in particular for symmet-ing the molecule’s position variable in plane waves

ric molecules where the matrix equations can be diagonal- = - - > . .

ized by a linear transformation to number-density andequq'@) for the center of mass ""Pd in spherical harmon-

charge-density fluctuations. The theory implies that the dyics Y7 (e) for the orientation vectoe:

namics outside the transient regime is determined, up to an Mo g s s my 2

overall time scalé,, by the equilibrium structure. In particu- p/(Q)=i"4mexpiq-ro)Y (e). (A1)

lar, it is independent of the inertia parameters of the systemr . . o
It was shown that the present theory reproduces all quali! _he molecule_—solvent interactions are specified by a set of

tative results obtained within the preceding much more in-d'reCt correlation functions

volved theory based on a description of the solute by tensor- _ % 0,2 .oz

density fluctuations. Both theories yield a similar phase C/(q)—<pqop/(q0)>/(p3q), do=(0,0@).  (A2)

diagram, Fig. 1. The characteristic differences of the reorien- o . .

tational correlators exhibited for strong steric hindrance ofThe strl#:ture dynamics is described by the matrix of correla-

rotations as opposed to weak steric hindrance are obtaind@"s: defined by

here, in Fig. 6, as previously. There are systematic quantita- M e m

tive differences between the two approximation approaches P aam)=(p7(do.)" pi'(do))- (A3)

wegl](irsienn?ﬁetg?;stgﬁt Imgg(r:;tlt?]g?l CI)I’: F[P]i ;?gfe;ﬁgct/vgrrlf Since the position vectors of the interaction sites can be

[13,14]. The earlier findings on the differences between thewrltttgr} ?Srgz(fﬁfzﬁ’ t?he F\;aylel?h expansion of the expo-

spectra for the responses with angular-momentum inflex nential in £q.(1) yields the formuia

=0, 1, and 2 have been corroborated by separatingathe a I o -

peaks from the complete spectra with the aid ofdhgcaling Pay= 2/: V2/ +1j,(92)p,(qo).- (A4)

law, Fig. 7.

The critical nonergodicity parametef§” have been cal-  sypstitution of this expression into E€B) leads, with Eq.
culated; these determine the form factors of quasielastic scaga?), to an expression connecting the direct correlation func-
tering from the liquid near the glass transition. Contrary totions c2 with c,(q):
what one finds for atomic solutes, these are not bell-shaped d
functions of wave numberg; rather they exhibit kinks; see .

Fig. 2. The form factors for some wave numbers/ary ; ngcgzz V27 +1j(az)c(q). (AS)
nonmonotonically with changes of the elongation of the mol-

ecule, Fig. 4. Analyzing these findings in terms of form fac- Substitution of Eq(A4) into Eq. (4) leads, with Eq(A3), to

tors defined for fixed angular-momentum indéx one can the expression of the site-density correlators in terms of the
explain the results as being due to intramolecular interfertensor-density correlators:
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ab - ) ) A, (t)= exp(Lt)A,. Using canonical averaging to define
Fq (t):/Ek V(27 +1)(2k+1)j (9Za) ] i(A2) $1(AO). scalar products in the space of variables,K) = (A* B), the
’ (AB) Liouvillian is Hermitian. The goal is to derive equations of
motion for the matrix of correlator€,(t) = (A,(t),Ap).
For the long-time limits of the correlatotégb(t) one gets a The initial condition is given by the positive definite matrix
combination of the nonergodicity parametefs,(qm) 9a5= (A4 ,Ap). The theory starts with a generalized Fokker-
= ¢ (gmt—x). If one uses the diagonal approximation Planck equation for the distribution functiag,=11,6(A,
f(q,m)=6,.f(q7m), one can write —a,), a=(a;,a,,...). Itisassumed that the time scales
for the fluctuations of thé\, and their products are larger
ab _ . : than those for the Langevin fluctuating forces. The spectra of
Fa (H“’)‘g (2/+1)jA(0z2)j (92,)F(a70). the latter can then be approximated by a constant matrix
(A7) I',z. Itis assumed, furthermore, that tlig,; are indepen-
dent of the distinguished variables, and that the equilibrium
Substituting the Rayleigh expansion of H4) into Eq.  distribution of the latter is Gaussian:
(3439, one can express the pair modes in terms of those

. _ . . . 1

formed with tensor-density fluctuations: (9.)=C exp( -5 % aagaéaZ)- (B1)

A3(K,p) =47, j (kz) YK pM(K)pg/ VNS, ].
(k:p) W;n Jokz) Y7L (K)pg S In the cited Fokker-Planck equation there occurs the stream-

(A8) ing velocityv (a) given by

Therefore, the overlaps of the forces with the pair modes can . J
be expressed as sums of the corresponding quantities calcu- v (2)(ga)=(A%g.)=ksT>, 2o {AG Aglda)-
lated in Ref.[13]. One finds for the mode-coupling coeffi- B 7%k
: : (B2)
cients in Eq.(35)
The Fokker-Planck equation is now reduced by projecting
ng(k):[kszk/ZWz]E (W 12D o(k) D g(k) (w; 24P, out the subspace of the distinguished variables. There ap-
cd pears the frequency matrix specifying the linear contribution
(A93)  to the streaming term,

Here one gets foa=A, B, orC

Qup=2 (A, LA)T,; . (B3)
Y

1 .
Da(k) =15 2 (— M2/ +1)23+ 1] (kza)cy(k)
73 The nonlinear contributions enter as combination

2 / 2
*PDEFDHFE=A7+ D o)’ (ASh) fa=Jdava<a>ga—i§ Quphp- (B4)

where the last factor denotes Wigner's 3ymbol. They determine the relaxation kerel as

APPENDIX B: MODE-COUPLING COEFFICIENTS _1
, _ » Map(t) =2 (fa(t).f,)g,5 - (B5)
Mode-coupling equations based on a description of the Y

molecules by site-density fluctuations have been derived in i . o
Ref. [18] by extending the procedure used originally for Tr)e time evolution is ge/nerated by the r_educed L|_ouwII|an
atomic system$26]. But the reported formulal8] do not £ =QLQ.fa(t)=exp(L t)f,, where Q is the projector
seem appropriate, since they do not reduce to the ones fO the space perpendicular to the one spanned by the distin-
tagged particle motion if the limit of a vanishing elongation 9uished variables. The result, which is equivalent to Eq.
parameter? is considered. Therefore, an alternative deriva-(2-19 in Ref.[33], reads
tion will be presented which starts from the theory developed
by Mori and Fujisakd 33] for an approximate treatment of HCp(t)= _Z [(iﬂaﬁ I',,)C, (1)
nonlinear fluctuations. The application of this theory will be Y
explained by rederiving the equations for the solvent before ‘
the ones for the solute are worked out. +f dt'M,,(t—t")C4(t")|. (B6)

0

1. The Mori-Fujisaka equations

Let us consider a set of distinguished dynamical variables 2. MCT equations for simple systems

A,,a=1,2, ..., defined as functions on the system’s phase To get a description of slowly varying structural fluctua-
space. The time evolution is generated by the Liouvilliantions, the original reasoning of MCT shall be adopted, and as
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distinguished variables the density fluctuatigns and the ~ 34 . . + s e
longitudinal current fluctuationg;== v, ,exp(q-r,) will Folt1=(p/16m"q )J dkSeSS,lq- ket - pep]“fify,
be chosen. The variable label of the preceding subsection (B11)

consists of two bitse=(\,q), A=1,2, so thatA,5=pg,
Ay;=]q- Notations are the same as those of the first parawith p=q—Kk.
graph of Sec. Il. One getY116= NSy Gog2q= Nv?,

Q1626= 05 Qog1g= 02 ¢/d, and all the other elements of the
matricesg and () are zero. Because of translational invari-

ance, one get€, ;,k(t)=0 unlessq=k, and rotational in-
variance implies thaC,g,4(t) depends on the modulus

3. MCT equations for the solute molecule

It is straightforward to generalize the preceding derivation
to systems with a diatomic solute molecule provided the lat-

only. The same holds for the matricEsandM, so that Eq. ter.is considered flexible. T_herefore, let us use this modi_fi—
(B6) reduces to a X 2 matrix equation withy appearing as cation of the problem. It will be assumed that the kinetic
a parameter. Sincép; is an element of the distinguished set €nergy of the molecule i& ,(M,/2)v3 and that there is a
of variables, the kernelﬁaﬁ and M ,4(t) vanish unlessx  binding potentiaV' (|r ,—rg|) between the two interaction
=B=(24q). The latter shall be denoted Y, and M(t), sites. The exact Eq17g remains valid with the frequency
respectively. EquatiofB6) can then be reduced to the equa- matrix replaced by that of the flexible molecul¥, ?. It is
tion of motion for the normalized density correlatgy(t)  defined via Eq.(17b) with the simple velocity correlator
=C1g1g(t)/NS;: = 520(kgT/my,).

The formulas of Sec. B 1 shaII be applied with the ex-

2 2 ' tended set of densitie ) and the correspondin
5 ¢q(t)+Fq&t¢q(t)+Qq¢q(t)+f dt'Mg(t—t")dp dg(t’) ¥4 P Pq ponding
0 longitudinal currentsl(q j N ) Thus the index consists of

=0. (B7)  three bitsa= (7.\,09), Where)\ 1,2 discriminates between
densities and currents, ame- O,A,B indicates solvent, atom

The application of the Mori-Fujisaka formalism can be sum-A, and atomB, respectively. In the infinite dilution limiN
marized as follows. The relaxation kernﬁlzmq(t) of the  —o, the equations for the solute do not directly couple to
exact Eq.(14) is approximately split into a white noise con- those for the solvent. Therefore, E®7) remains valid and
tribution 2I';6(t) and a remaindeM(t), where well de- one gets a modification of Eq173 for the solute:
fined formulas for the two contributions are available. In this 5 (/o
paper, the kerndl, is neglected and EB5) for the kernel, I Fq(t) +TqdFq(t) + Qy “Fy(t)

Mo(D=(fg(O.f)/Nv2  fo=foq,  (BB) + [ avmge-t)aFt-o @12
0

shall be approximated further.

If one writesala=7)a and a25=75, one can denote the The relaxation kernel reads
equilibrium distributionw(a) =(g,) for the solvent variables

as MEP(1) = (F2(1), F2)(Mp /kgT),  fi=Tfapg. (B13)
w(a)=C exp’ —(U2N) X [(1-pcg)pgpg* The determination of the Gaussian distribution of the ex-
d tended distinguished variables requires the inversion of the
v 3X3 matrix (A;14,A,1g). Making use of the infinite dilu-
() jgiqlt- (B9 tion limit N—, one gets
This is used to derive from EqsB2) and(B4) <ga>=w°(a)exp[ (1/2)2 % [(ZP/N)éab apqpq
q

fo=—i(pv?/N)Y (K-a/Q)cepipg—ic+ ofg, (B1O) 1, at b By 2
= —(W )abp pq —(ma/kBT) J JQ ] ) (Bl4)

whereéf; denotes a term whose contribution to the memory
kernel turns out to be irrelevant for the structural relaxation
processes, and therefore shall be neglected. The remainirg{j
task is the evaluation of averaggs(t) ps(t), ok pp), Where
the time evolution is generated by the reduced Liouvillian.
Here the original MCT ansatz is Use(dlk(t)pkr)(pp(t)pp )

+ (ke p). As a result, one getdl,(t)= Q mg(t) with the a_ _; A aa . . a
well known expression for the mode- coupll%g functional in fq I(p/N)(kBT/ma)Ek: [(a=k)-alalcipepq-i+ ot
Egs.(15): (B15

erew®(a) is the distribution for the solvent variables
en by Eq.(B9). This expression is used to work out the
fluctuating force as explained in connection with Eg§10):
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As above, the contributions due ﬁiE are neglected and the

remaining pair correlations are factorized. This leads to
M (1) = ?my(1), (B16)

where the functional for the kernel in E(L83 reads

FTETI=0 23 wi(pi8n?) f dR(G- p/a)2S,ceelFerT
(B17)

with 5 abbreviatingﬁ—lz. Neglecting the friction ternt’y in
Eqg. (B12), the MCT equation$17) and(18) are derived for
the flexible molecule.

PHYSICAL REVIEW E63 011206

Obviously, a theory for a rigid molecule can be obtained
from one for a flexible molecule only within a quantum-
mechanical approach. One has to consider the case where
excitation energies for translational and rotational motion are
small compared to the thermal energy, while the energies for
vibrational excitations are large. Let us assume that the for-
mulas can be obtained by replacing all equilibrium averages
in the preceding equations with the correct quantum me-
chanical ones, where the latter can be evaluated for the clas-
sical molecule model with five degrees of freedom. This
amounts to replacing structure functions with the classical
guantities, in particular the replacement ﬂ‘;/ by Q.
Thereby Eq(B12) produces Eqs17).
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