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Mode-coupling theory for the glassy dynamics of a diatomic probe molecule
immersed in a simple liquid

S.-H. Chong, W. Go¨tze, and A. P. Singh*
Physik-Department, Technische Universita¨t München, 85747 Garching, Germany

~Received 23 August 2000; published 21 December 2000!

Generalizing the mode-coupling theory for ideal liquid-glass transitions, equations of motion are derived for
the correlation functions describing the glassy dynamics of a diatomic probe molecule immersed in a simple
glass-forming system. The molecule is described in the interaction-site representation and the equations are
solved for a dumbbell molecule consisting of two fused hard spheres in a hard-sphere system. The results for
the molecule’s arrested position in the glass state and the reorientational correlators for angular-momentum
index l 51 andl 52 near the glass transition are compared with those obtained previously within a theory
based on a tensor-density description of the molecule in order to demonstrate that the two approaches yield
equivalent results. For strongly hindered reorientational motion, the dipole-relaxation spectra for thea process
can be mapped on the dielectric-loss spectra of glycerol if a rescaling is performed according to a suggestion
by Dixon et al. @Phys. Rev. Lett.65, 1108~1990!#. It is demonstrated that the glassy dynamics is independent
of the molecule’s inertia parameters.
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I. INTRODUCTION

The mode-coupling theory~MCT! for the evolution of
structural relaxation in glass-forming liquids was origina
developed for atomic systems and for mixtures of atoms
ions. Detailed tests of the theory have been provided thro
comparisons of the predictions for the hard-sphere sys
~HSS! with dynamic-light-scattering data for hard-sphe
colloids, as can be inferred from Ref.@1# and the papers
quoted therein. Quantitative tests have also been mad
comparing molecular-dynamics-simulation data for a bin
mixture with the MCT results for the model@2–4#. A series
of general implications of the MCT equations were derive
such as scaling laws and relations between anomalous e
nents describing power-law spectra and relaxation-t
scales, which establish some universal features of the
namics@5#. It was conjectured that these results also apply
molecular liquids. Indeed, there is a large body of literatu
which is reviewed in Ref.@6#, dealing with the analysis o
data from experiments or from molecular-dynamics simu
tions for complicated systems in terms of the universal M
formulas. These studies suggest that MCT describes s
essential features of the glassy dynamics for molecular
uids. Therefore, it seems desirable to develop a detailed
croscopic theory also for systems of nonspherical cons
ents.

A mode-coupling theory for molecular systems was st
ied in Refs. @7–12#, where the structure is described b
tensor-density fluctuations. The basic concepts of the M
for simple systems such as density correlators and relaxa
kernels have been generalized to infinite matrices. The e
tions for the nonergodicity parameters and critical amp
tudes were solved. These quantities generalize the De

*Present address: Mckinsey & Company, Inc., 80538 Mu¨nchen,
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Waller factors of the arrested glass structure and characte
its changes with temperature. Comparison of the theoret
findings with molecular-dynamics-simulation data for wa
@9,11# and for a system of linear molecules@10# demonstrates
that the theory can cope with microscopic details. Howev
the derived equations are so involved that further simplifi
tions would be required before correlators or spectra co
actually be calculated.

The simplest question of glassy dynamics of the rotatio
degrees of freedom concerns the motion of a single lin
molecule in a simple liquid. This problem is equivalent to t
study of a dilute solution of linear molecules in an atom
liquid as solvent. For this system, a MCT has been dev
oped, generalizing the equation for a tagged particle i
simple liquid to an infinite-matrix equation for a tagged mo
ecule @13#. The equations were solved for a molecule co
sisting of two fused hard spheres immersed in a HSS@13,14#.
The validity of the universal laws for the reorientational d
namics was demonstrated. Characteristic differences for
a process between the relaxation for angular-momentum
dex l 51 and l 52 were identified which explain the dif
ferences between spectra measured forl 51 by dielectric-
loss spectroscopy and forl 52 by depolarized-light-
scattering spectroscopy. The experimentally establis
large ratio of the a relaxation times for the
l 52-reorientational process and the longitudinal elas
modulus was also obtained@14#. These examples show tha
MCT can provide general insight into the glassy dynamics
rotational degrees of freedom that goes beyond the cont
of the universal formulas.

Within the basic version of MCT, the tagged-particl
density-fluctuation correlator for wave numberq considered
as a function of timet, fq

s(t), or the dynamical structure
factor for frequencyv, Sq(v), can be written asfq

s(t)
5fq

s* (t/t0) and Sq(v)5Sq* (vt0). Here the functions

fq
s* ( t̃ ) and Sq* (ṽ) are completely determined by the equ

librium structure. This holds for times outside the transie
©2000 The American Physical Society06-1
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regime,t/t0@1, or for frequencies below the band of micr
scopic excitations,vt0!1. The subtleties of the transien
dynamics, like the dependence of oscillation frequencies
mass ratios, enter into the long-time dynamics and the l
frequency spectra via a common time scalet0 only. This
means that the statistical information on the long-time
namics is determined up to a scalet0 by the statistics of the
system’s orbits in configuration space rather than by the
bits in phase space. The glassy dynamics as describe
functions likefq

s(t) or Sq(v) deals with the probabilities o
paths through the high-dimensional potential-energy la
scape. The complicated dynamics on microscopic time sc
is irrelevant in the long-time regime; it merely determin
the scalet0 for the exploration of the configuration spac
The cited results of the MCT for simple systems and m
tures @5,15,16# are not valid for the mentioned theories f
molecular systems@7–11,13,14#, which imply isotope effects
for the glassy dynamics. A change of the mass ratio of
molecule’s constituents shifts the center of gravity, and
mode-coupling coefficients are thereby altered. This lead
shifts of the glass-transition temperature, the particle’s loc
ization lengths, and the like. In this respect a system ofA-B
molecules would behave qualitatively different than anA-B
mixture. There are no experimental observations deman
that the long-time dynamics is independent of the ine
parameters of the molecules. But we consider the spec
isotope effects as artifacts of the approximations underly
the so far studied extensions of MCT. This critique and
formidable complexity of the theories based on the tens
density descriptions serve as a motivation to search for
alternative approach describing the glassy dynamics of
lecular systems. An alternative MCT was proposed by K
wasaki@17#. But so far, nothing is known about the solutio
of his equations nor the results concerning the iner
parameter issue. In this paper the suggestion of Chong
Hirata @18# will be followed, and the MCT will be based o
the interaction-site representation of the system@19,20#.

The description of a molecular liquid by interaction-s
densities is inferior to the one by tensor densities. The c
elators of tensor densities can be used to express thos
interaction-site densities but not vice versa. Interaction-
theories also have difficulties handling reorientational co
elators. Therefore, it is a major goal of this paper to sh
that the indicatedad hocobjections against a MCT based o
an interaction-site representation do not fully apply if t
theory is restricted to a parameter regime where the c
effect is the dominant mechanism for the dynamics. To p
ceed, the same dumbbell-molecule problem shall be stud
which was analyzed previously@13,14#.

This paper is organized as follows. The basic equati
for the model are introduced in Sec. II. Then, the MCT fo
diatomic molecule in a simple liquid is formulated in Se
III. The major problem is the derivation of formulas for th
mode-coupling coefficients. This will be done within th
Mori-Fujisaka formalism, and the details are presented
Appendix B. In Sec. IV, the results of the theory for th
dumbbell in a HSS are discussed. The findings are sum
rized in Sec. V.
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II. THE MODEL

A system ofN identical atoms distributed with densityr
at positionsrWk ,k51,•••,N, is considered as solvent. Th
structure can be described by the density fluctuations
wave vectorsqW : rqW5(k exp(iqW•rWk). The structure factorSq
5^urqW u2&/N provides the simplest information on the equ
librium distribution of these particles. Herê•••& denotes
canonical averaging for temperatureT. Because of isotropy
Sq only depends on the wave numberq5uqW u. The Ornstein-
Zernike equation,Sq51/@12rcq#, relatesSq to the direct
correlation functioncq . The structural dynamics is describe
in a statistical manner by the normalized density correlat
fq(t)5^rqW(t)* rqW&/NSq . They are real even functions o
time t and exhibit the initial behavior:fq(t)512 1

2 (Vqt)2

1O(utu3). HereVq5qv/ASq is the bare phonon dispersion
v5AkBT/m denotes the thermal velocity of the particle
with massm @20#.

A rigid molecule of two atomsA andB shall be consid-
ered as solute. LetrWa ,a5A or B, denote the position vector
of the atoms, so thatL5urWA2rWBu denotes the distance be
tween the two interaction sites. VectoreW5(rWA2rWB)/L abbre-
viates the axis of the molecule. Ifma denotes the mass o
atoma, the total massM5mA1mB and the moment of in-
ertia I 5mAmBL2/M determine the thermal velocitiesvT

5AkBT/M and vR5AkBT/I for the molecule’s translation
and rotation, respectively. Let us introduce also the cen
of-mass positionrWC5(mArWA1mBrWB)/M and the coordinates
za of the atoms along the molecule axis:zA5L(mB /M ),
zB52L(mA /M ). The position of the molecule shall b
characterized by the two interaction-site-density fluctuatio

rqW
a
5 exp~ iqW •rWa!, a5A or B. ~1!

The two-by-two matrixwq of static fluctuation correlations
wq

ab5^rqW
a* rqW

b
& is given by

wq
ab5dab1~12dab! j 0~qL!, ~2!

where here and in the followingj l (x) denotes the spherica
Bessel function of indexl . The solute-solvent interaction i
described by the pair-correlation functionhq

a5^rqW
* rqW

a
&/r,

which is expressed by a direct correlation functioncq
a @19#

hq
a5Sq(

b
wq

abcq
b . ~3!

The dynamics of the molecule shall be characterized
the interaction-site-density correlators

Fq
ab~ t !5^rqW

a
~ t !* rqW

b
&. ~4!

These are real even functions of time obeyingFq
ab(t)

5Fq
ba(t). They shall be combined to a two-by-two-matr

correlatorFq(t). Its short-time expansion can be denoted
6-2
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MODE-COUPLING THEORY FOR THE GLASSY . . . PHYSICAL REVIEW E63 011206
Fq~ t !5wq2
1

2
q2Jqt21O~ utu3!. ~5!

The continuity equation readsṙqW
a
5 iqW • jWqW

a , where the current

fluctuation is jWqW
a
5vW arqW

a , with vW a denoting the velocity of

atom a. Therefore, one getsJq
ab5^(qW • jWqW

a)* (qW • jWqW
b)&/q2. The

result splits into a translational and a rotational part,Jq5Jq
T

1Jq
R, where@21#

Jq
Tab5vT

2wq
ab , ~6a!

Jq
Rab5vR

2S 2

3
zazbD $dab1~12dab!@ j 0~qL!1 j 2~qL!#%.

~6b!

Let us denote the small-q expansion of the density corr
elators in the form

Fq
ab~ t !512

1

6
q2Cab~ t !1O~q4!. ~7!

The diagonal elements of the symmetric matrixC(t) are the
mean-squared displacements

dr a
2~ t !5^@rWa~ t !2rWa~0!#2&5Caa~ t !, ~8a!

while the off-diagonal elements can be related to the dip
correlator as

C1~ t !5^eW~ t !•eW &5$CAB~ t !2 1
2 @CAA~ t !1CBB~ t !#%/L2.

~8b!

The mean-squared displacement of the center of mass ca
expressed as

dr C
2 ~ t !5^@rWC~ t !2rWC~0!#2&

5@mAdr A
2~ t !1mBdr B

2~ t !#/M1~2I /M !@C1~ t !21#.

~8c!

Expanding Eq.~5! in q yields the initial decay

C~ t !5C013J0t21O~ utu3!. ~9!

Here the initial valueC0 is due to the expansion of Eq.~2!,
while the prefactor of thet2 term is due to the zero-wave
number limit of Eqs.~6!:

C0
ab5L2~12dab!, J0

ab5vT
21

2

3
vR

2zazb . ~10!

For symmetric molecules, one getsmA5mB5M /2, I
5ML2/4, andzA52zB5L/2. In this case, there are onl
two independent density correlators, sinceFq

AA(t)5Fq
BB(t).

It is convenient to perform an orthogonal transformation
fluctuations of total number densitiesrN(qW ) and ‘‘charge’’
densitiesrZ(qW ):

rx~qW !5~rqW
A
6rqW

B
!/A2, x5N or Z. ~11a!
01120
le

be

The transformation matrixP5P21 reads

P5
1

A2
S 1 1

1 21D . ~11b!

It diagonalizes the matriceswq from Eq. ~2! and Jq from
Eqs.~6!:

~PwqP!xy5dxywx~q!, wx~q!516 j 0~qL!, ~11c!

~PJq
TP!xy5dxyvT

2wx~q!, ~11d!

~PJq
RP!xy5dxy

1

6
vR

2L2$17@ j 0~qL!1 j 2~qL!#%, ~11e!

wherex,y5N or Z. Also, the matrix of density correlators i
diagonalized. Introducing the normalized correlatorsfq

x(t),
one gets

fq
x~ t !5^rx~qW ,t !* rx~qW !&/wx~q!,

~12!
@PFq~ t !P#xy5dxyfq

x~ t !wx~q!.

The mean-squared displacements are equal and shall b
noted by dr 2(t)5dr A

2(t)5dr B
2(t), so that Eq.~8c! reads

dr 2(t)5dr C
2 (t)1(1/2)L2@12C1(t)#. The matrixC(t) is di-

agonalized:

@PC~ t !P#NN52dr C
2 ~ t !1L2, @PC~ t !P#ZZ52L2C1~ t !.

~13!

In Appendix A we show how the correlation functions
the interaction-site representation can be expressed in te
of the ones in the tensor-density representation.

III. APPROXIMATIONS

A. The solvent-density correlator

The density correlator of the solvent is needed to form
late the equations for the probe molecule. This quantity
discussed comprehensively in the preceding literature on
MCT for simple systems@22#. Let us note here only thos
equations that have to be solved in order to obtain the in
information for the calculations of the present paper. Fi
there is the exact Zwanzig-Mori equation of motion@20#
relating the correlator for density fluctuationsfq(t) to the
correlatormq(t) for the force fluctuations:

] t
2fq~ t !1Vq

2fq~ t !1Vq
2E

0

t

dt8mq~ t2t8!] t8fq~ t8!50.

~14!

Second, there is the approximate expression for kernelmq(t)
as mode-coupling functional

mq~ t !5Fq@f~ t !#. ~15a!

The functionalFq is rederived as Eq.~B11! in Appendix B.
The wave numbers are discretized toM values with spacing
h: q/h51/2,3/2,•••,M21/2. Thenf(t) and similar quanti-
ties are to be viewed as vectors ofM componentsfq(t), q
51,•••,M , and the functional is
6-3
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Fq@ f̃ #5(
kp

Vq,kpf̃ k f̃ p . ~15b!

Third, Eqs.~14! and ~15a! imply the equation for the long
time limit f q5fq(t→`):

f q5Fq@ f #/$11Fq@ f #%. ~16!

For the liquid state, there is only the trivial solutionf q50.
The glass is characterized by a nonergodicity paramete
, f q,1, which has the meaning of the Debye-Waller fac
of the arrested structure. At the liquid-glass transition,
long-time limit of the correlator changes discontinuous
from zero to the critical valuef q

c.0.

B. The solute-interaction-site-density correlators

For matrices of correlation functions as defined in Eq.~4!,
the Zwanzig-Mori formalism also leads to an exact equat
of motion @20#:

] t
2Fq~ t !1Vq

2Fq~ t !1Vq
2E

0

t

dt8mq~ t2t8!] t8Fq~ t8!50.

~17a!

From the short-time expansion together with Eq.~5!, one
gets

Vq
25q2Jqwq

21 . ~17b!

The right-hand side~rhs! of this equation is a product of two
symmetric positive definite matrices. Hence it can be writ
as the square of a matrixVq . Splitting off this matrix before
the convolution integral is done for later convenience.

The difficult problem is deriving an approximation for th
matrix mq(t) of fluctuating-force correlations such that th
cage effect is treated reasonably. The result, Eq.~B17! from
Appendix B, can be formulated as mode-coupling functio
Fq :

mq
ab~ t !5F q

ab@F~ t !,f~ t !#. ~18a!

After the discretization of the wave numbers as explain
above,Fq reads

F q
ab@ f̃, f̃ #5q22(

c
wq

ac(
kp

Vq,kp
cb f̃ k

cbf̃ p . ~18b!

The preceding equations are matrix generalizations of
MCT equations for the tagged-particle-density correla
fq

s(t) in a simple liquid@23#.
The equation for the nonergodicity parameters of the m

ecule,Fq
ab`5Fq

ab(t→`), can be obtained from Eqs.~17a!
and ~18a!. It is a matrix generalization of Eq.~16!:

Fq
`5Fq@F`, f #$11Fq@F`, f #%21wq . ~19!

If the solvent is a liquid, i.e., iff q50, one getsFq
`50. If the

solvent is a glass, the long-time limitsFq
ab` can be non-
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trivial. In this case, the solvent properties enter via t
Debye-Waller factorsf q , which renormalize the coupling
coefficientsVq,kp

cb in Eq. ~18b!.
Let us specialize to symmetric molecules. Multiplyin

Eqs.~17!–~19! from left and right withP given by Eq.~11b!
and inserting15PP between every pair of matrices, a
equations are transformed into diagonal ones. Thus, there
two equations of motion,

] t
2fq

x~ t !1Vq
x2fq

x~ t !1Vq
x2E

0

t

dt8mq
x~ t2t8!] t8fq

x~ t8!50,

~20!
x5N or Z.

The two characteristic frequenciesVq
x , which specify the

initial decay of the correlators byfq
x(t)512 1

2 (Vq
xt)2

1O(utu3), read

Vq
N25~vTq!21

1

6
~vRLq!2

3@12 j 0~qL!2 j 2~qL!#/@11 j 0~qL!#, ~21a!

Vq
Z25~vTq!21

1

6
vR

2@11 j 0~qL!1 j 2~qL!#

3~qL!2/@12 j 0~qL!#. ~21b!

The relaxation kernels can be written asmq
x(t)

5F q
x@fx(t),f(t)#, where Eq.~B17! gives

F q
x@ f̃ x, f̃ #5@wx~q!/q2#E dkW

2~2p!3
~qW •pW /q!2

3wx~k!rSpcN~p!2 f̃ k
x f̃ p . ~22a!

HerepW 5qW 2kW , andcN(p)5A2cp
A5A2cp

B . The above speci-
fied discretization of the wave numbers yieldsF q

x as poly-
nomial

F q
x@ f̃ x, f̃ #5@wx~q!/q2#(

kp
Vq,kp

x f̃ k
x f̃ p . ~22b!

One gets for the nonergodicity parametersf q
x5fq

x(t→`)
5(Fq

AA`6Fq
AB`)/wx(q)

f q
x5F q

x@ f x, f #/$11F q
x@ f x, f #%. ~23!

There is no coupling between the fluctuations of the to
density and those of the charge density. The mathema
structure of the two sets of equations forx5N and x5Z,
respectively, is the same as the one studied previously for
density correlatorfq

s(t) of a tagged particle in a simple liq
uid @23#. For the density dynamics one also finds the smaq
asymptote for the frequencyVq

N25(vTq)21O(q4), reflect-
ing free translation of the probe molecule. There is also
q22 divergency of the mode-coupling coefficients inF q

N ,
which implies the approach towards unity of the Lam
Mössbauer factor for vanishing wave number:f q→0

N 51. For
6-4
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the charge dynamics, one gets a nonzero small-q limit for the
frequency characterizing free rotationVq→0

Z2 52vR
21O(q2).

The mode-coupling coefficients do not diverge forq→0,
since 6wZ(q)/(Lq)2→1. Therefore, the nonergodicity pa
rameter for the variablerZ(qW ,t) approaches a limit smalle
than unity: f q→0

Z ,1.

C. The dipole correlator and the mean-squared displacements

According to Eqs.~8!, the knowledge of the dipole cor
relator C1(t) and two of the mean-squared displaceme
dr a

2(t) for a5A, B, or C is equivalent to the knowledge o
the three independent elements of the symmetric ma
C(t). Using Eq.~7! and expanding Eq.~17a! for small wave
numbers, one gets

] t
2C~ t !2D1V0

2C~ t !1J0E
0

t

dt8m~ t2t8!] t8C~ t8!50.

~24!

This exact equation of motion forC(t) has to be solved with
the initial condition from Eq.~9!. The frequency matrix is
obtained as zero-wave-number limit from Eq.~17b!

V0
25~2vR

2/L !S zA 2zA

zB 2zB
D . ~25!

Equation ~24! implies C̈(0)2D1V0
2C(0)50. Thus, one

gets from Eq.~9! D56J01V0
2C0, i.e., Dab56vT

212vR
2(zA

1zB)za .
The MCT approximation for the kernelm(t) is obtained

by combining Eqs.~17b! and ~18b! and taking the zero-
wave-vector limit. With Eq.~B17!, one finds

m~ t !5F@F~ t !,f~ t !#, ~26a!

F ab@ f̃, f̃ #5
1

6p2E0

`

dkk4rSkck
ack

bf̃ k
abf̃ k . ~26b!

Again, the theory simplifies considerably for symmet
molecules. In this case, one can transform Eq.~24! as ex-
plained in connection with the derivation of Eq.~20!. Using
Eq. ~13! one gets the exact equation of motion for the me
squared displacement

] t
2dr C

2 ~ t !26vT
21vT

2E
0

t

dt8mN~ t2t8!] t8dr C
2 ~ t8!50,

~27!

to be solved with the initial behaviordr C
2 (t)53(vTt)2

1O(utu3). Similarly, one obtains for the dipole correlator

] t
2C1~ t !12vR

2C1~ t !12vR
2E

0

t

dt8mZ~ t2t8!] t8C1~ t8!50,

~28!

to be solved with the initial decayC1(t)512(vRt)2

1O(utu3). The MCT approximation for the kernels is ob
tained from Eq.~26b!:
01120
s
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mx~ t !5Fx@fx~ t !,f~ t !#, x5N or Z, ~29a!

Fx@ f̃ x, f̃ #5axE
0

`

dkk4rSkc
N~k!2wx~k! f̃ k

x f̃ k , ~29b!

where aN51/(6p2) and aZ5L2/(72p2). Equations~28!
and ~29! for the dipole correlator have the standard form
the MCT equation. Iffq

Z(t) approaches zero for large time
the same approach towards equilibrium is exhibited
C1(t). If the solvent is a glass,f q.0, and if the charge-
density fluctuationsfq

Z(t) exhibit nonergodic behavior,f q
Z

.0, thel 51-reorientational correlator also exhibits none
godic dynamics:

C1~ t→`!5 f 15FZ@ f Z, f #/$11FZ@ f Z, f #%. ~30!

Parameterf 1 is the long-wavelength limit off q
Z discussed in

Eq. ~23!: f q→0
Z 5 f 1.

D. The quadrupole correlator

The quadrupole correlatorC2(t)5^3@eW (t)•eW #221&/2
cannot be extracted from the correlatorsFq

ab(t) with a,b
5A or B. But let us consider a linear symmetric triatom
molecule. The third atom, labeledC, has its position in the
centerrWC . The preceding theory can be extended by add
as a third variable the fluctuationsrqW

C
5 exp(iqW•rWC). The basic

quantities are now the elements of the 333 matrix cor-
relator, defined as in Eq.~4! with a,b5A, B, or C. The
correlator formed withrQ(qW )5rqW

A
1rqW

B
22rqW

C is a linear
combination of the nine functionsFq

ab(t). An expansion for
small q yields

^rQ~qW ,t !* rQ~qW !&5
1

180
~qL!4FC2~ t !1

5

4G1O~q6!.

~31!

In this case,C2(t) can be obtained in a manner similar
that discussed above forC1(t). A diatomic molecule can be
considered a special mathematical limit of a triatomic o
Hence, there is, in principle, no problem obtainingC2(t)
within a theory based on an interaction-site description. M
tivated by this observation, an auxiliary siteC shall be intro-
duced@24,25# andrqW

C will be used as the third basic variable
However, a complete theory with 333 matrices shall not be
developed. Rather, some additional approximations will
introduced so thatC2(t) is obtained as a corollary of th
above-formulated closed theory.

The quadrupole correlator can be written as the smaq
limit of a correlation function formed with tensor-densi
fluctuations defined in Eq.~A1! for qW 05(0,0,q): C2(t)
5 limq→0^r2

0(qW 0 ,t)* r2
0(qW 0)&. Therefore, an exact Zwanzig

Mori equation can be derived as usual:

] t
2C2~ t !16vR

2C2~ t !16vR
2E

0

t

dt8m2
R~ t2t8!] t8C2~ t8!50.

~32!
6-5
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The relaxation kernelm2
R(t) is a correlator for fluctuating

forces FR2(q0,t) referring to angular-momentum indexl
52 and helicitym50:

m2
R~ t !5 lim

q→0
^FR2~q0,t !* FR2~q0!&. ~33!

The time evolution of the fluctuating force is generated
the reduced LiouvillianL 85QLQ, whereQ projects per-
pendicular tor2

0(qW 0) andLr2
0(qW 0), and the LiouvillianL is

defined byiLA(t)5] tA(t). The notation has been chosen
as to bring the formulas into agreement with those of
more general theory in Ref.@13#. The procedure used for th
theory of simple liquids@26# shall be applied to derive a
approximation for the kernel. First, the forces will be a
proximated by the projection onto the space of the simp
modes contributingFR2→P8FR2. HereP8 projects onto the
space spanned by the pair modes

Aa~kW ,pW !5rkW
a
rpW /ANSp, a5A, B, or C. ~34a!

The essential step is the second one, where correlation
the pairs are replaced by products of correlations:

^Aa~kW ,pW ,t !* Aa8~kW8,pW 8!&→dkWkW8dpW pW 8^rkW
a
~ t !* rkW

a8&

3^rpW~ t !* rpW&/NSp .

This approximation is done in particular fort50, thereby
deriving for the normalization matrix for the pair mode

^Aa(kW ,pW )* Ab(kW8,pW 8)&→dkWkW8dpW pW 8wk
ab . Here wab(k)

5 j 0@k(za2zb)# generalizes Eq.~2! to a 333 matrix. As a
result, one gets

m2
R~ t !5 lim

q→0
(
kWpW

(
abcd

^FR2~q0!* Aa~kW ,pW !&

3~wk
21!abFk

bc~ t !fp~ t !

3~wk
21!cd^Ad~kW ,pW !* FR2~q0!&. ~34b!

Theq→0 limit is carried out easily, reducing the sum overkW

andpW to the one overkW with kW52pW . One obtains the kerne
as mode-coupling functional

m2
R~ t !5E

0

`

dk (
abP$A,B,C%

V2
ab~k!Fk

ab~ t !fk~ t !. ~35!

Let us restrict the discussion to symmetric molecules.
this case, an explicit expression forV2

ab(k) is noted as Eqs
~A9! in Appendix A.

The correlatorsfk(t) and Fk
ab(t) with a,b5A or B are

taken from Secs. III A and III B, respectively. The theory
Sec. III C provides the results for the mean-squared displa
ment dr C

2 (t). The Gaussian approximation shall be us
to evaluateFk

CC(t)' exp@21
6k

2drC
2(t)#. The two remaining

functions can be expressed in terms of tensor-den
fluctuations according to Eq. ~A6!: Fk

aC(t)
5( l A(2l 11) j l (kza)f l 0(k0,t) for a5A or B. As in the
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previous work@14#, only the diagonal correlators shall b
taken in the sum, i.e., the approximation will be use
Fk

aC(t)' j 0(kza)Fk
CC(t).

IV. RESULTS

A few concepts shall be mentioned which were intr
duced@26# to describe the MCT-liquid-glass-transition dy
namics. In the space of control parameters, a smooth fu
tion s is defined near the transition points, called t
separation parameter. Glass states are characterizeds
.0, liquid states bys,0, ands50 defines the transition
hypersurface. Suppose only one control parameter, say
densityr, is varied near the transition point. Then one c
write for small distance parameterse5(r2rc)/rc :s5Ce,
C.0. In addition toC, the transition point is characterize
by a time scalet0 and by a numberl, 0,l,1. The scalet0
specifies properties of the transient dynamics, andl is called
the exponent parameter. The latter determines a certain n
ber B.0, the critical exponenta, 0,a<1/2, and the von
Schweidler exponentb, 0,b<1. There are two critical
time scales governing the bifurcation dynamics close to
transition:

ts5t0 /usud, ts85t0B21/b/usug. ~36!

The anomalous exponents of the scales readd51/2a,g
51/2a11/2b. The HSS shall be used as solvent. There
only one control parameter for the equilibrium structu
which shall be chosen as the packing fractionw of the par-
ticles with diameter d, w5prd3/6. The distance
parameter shall be given by the logarithmx of ueu:

e5~w2wc!/wc56102x. ~37!

The structure factorSq is calculated within the Percus
Yevick theory @20#. The wave numbers are discretized
M5100 values with spacinghd50.4. For this solvent
model, results for the density correlators and their spe
can be found in Ref.@27#. The glassy dynamics is analyze
in Ref. @22#, from which one inferswc50.516,C51.54,
l50.735,a50.312,b50.583, andB50.836. Furthermore,
t050.0236(d/v) @15#.

Dumbbells of two fused hard spheres of diametersdA
5dB5d shall be used as solute. The elongation param
z5L/d quantifies the bond length. The solute-solvent-dire
correlation functions are also calculated within the Perc
Yevick theory. Within the tensor-density description, the
rect correlation functionscl (q) have been determined i
Ref. @28#. These results are substituted in the formulas
Appendix A, to evaluate the equilibrium structure in the s
representation. In all summations over contributions due
various angular-momentum indicesl , a cutoff l co58 is
chosen. It was checked for representative cases that inc
ing the cutoff tol co516 does not significantly change th
results to be discussed. The discretization of the vari
wave-vector integrals is done as specified above for the
vent. The results in Secs. IV A and IV B deal with a sym
6-6
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MODE-COUPLING THEORY FOR THE GLASSY . . . PHYSICAL REVIEW E63 011206
metric dumbbell withmA5mB5m, and in Sec. IV C the
molecule withmA510m, mB5m is considered.

Throughout the rest of this paper, the particle diamete
chosen as unit of length,d51, and the unit of time is chose
so that the thermal velocity of the solvent isv51.

A. Structural arrest

There are two control parameters for the system, nam
the packing fractionw of the solvent and the elongationz of
the solute molecule. Figure 1 exhibits the phase diagr
Phase I deals with states wherew is below the critical value
wc , i.e., the solvent is a liquid. In this case, the long-tim
limits of the mode-coupling kernels in Eqs.~18! vanish. All
solute correlators relax to zero for long times, and the m
ecule diffuses through the solvent. Forw>wc , the solvent is
a glass. Structural fluctuations behave nonergodically. In
ticular, a tagged solvent particle does not diffuse; rather,
localized. Since the atoms of the molecule withdA5dB5d
experience the same interaction with the solvent as the
vent particles do among each other, one expects the mole
to be localized as well. Indeed, Eq.~23! yields for w
>wc : f q

N.0. If w increases from belowwc to abovewc , the
long-time limit fq

N(t→`) increases discontinuously atwc

from zero tof q
Nc.0. Also, the quadrupole correlator exhibi

nonergodic dynamics:C2(t→`)5 f 2.0. The cages sur
rounding the molecule cause such strong steric hindra
that quadrupole fluctuations of the orientational vectoreW can-
not relax to zero. In this sense, the statesw>wc are ideal
glasses.

There are two alternatives for the glass. Phase II de
with states for sufficiently smallz. There is such small steri
hindrance for a flip of the molecule’s axis between the t

FIG. 1. Phase diagram of a dilute solute of symmetric dumb
molecules with elongationz consisting of two fused hard sphere
immersed in a hard-sphere system with packing fractionw. The
horizontal line marks the liquid-glass transition at the critical pa
ing fraction wc50.516. The other full line is the curvezc(w) of
critical elongations for a type-A transition between phases II an
III. In phase II dipole fluctuations of the solute relax to zero for lo
times, while they are frozen in phase III. The valuezc5zc(wc)
50.380 is marked by an arrow. The dashed line is the corresp
ing transition curve calculated in Ref.@29#; it terminates atzc

t

50.297.
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energetically equivalent positionseW and 2eW that Eq. ~23!
yields f q

Z50. The dynamics of the charge fluctuations is e
godic. In particular, the dipole correlator relaxes to ze
C1(t→`)50. Phase II is an amorphous counterpart o
plastic crystal. For sufficiently largez, steric hindrance for
dipole reorientations is so effective, that the charge fluct
tions also behave nonergodically. In this case, Eq.~23! yields
a positive long-time limit 0, f q

Z5fq
Z(t→`). In particular,

dipole-disturbances do not relax to zero:C1(t→`)5 f 1
.0. This phase, III, is a glass with all structural disturbanc
exhibiting nonergodic motion. Phases II and III are separa
by transitions atz5zc(w), w>wc . With decreasing density
the steric hindrance for reorientations decreases. Thus,zc(w)
increases with decreasingw, as shown by the full line in Fig.
1. The transition curve terminates with a horizontal slope
the largest critical elongationzc5z(wc)50.380. Function
zc(w) was calculated before within the MCT based on t
tensor-density description@29#, and the transition curve o
this theory is added as a dashed line in Fig. 1. The result
the two theories are in qualitative agreement. It would
interesting if molecular-dynamics studies could determi
which of the two theories is closer to reality. The asympto
laws for the transition from phase II to phase III ha
previously been described as a type-A transition, as can
be inferred from Ref.@30# and the papers quoted ther
At this transition, C1(t→`) increases continuously with
increasingz.

The heavy full lines in Fig. 2 exhibit critical nonergodic
ity parametersf q

xc for z50.80, calculated from Eq.~23! for
the liquid-glass transition pointw5wc . These quantities are
Lamb-Mössbauer factors of the molecule. The functionf q

Nc

can be measured, in principle, as a cross section for inco
ent neutron scattering from the solute, provided both cen
A andB are identical atoms without spin. As expected for
localized probability-distribution Fourier transform, th
f q

xc-versus-q curves decrease with increasingq. Most re-
markable are the kinks exhibited byf q

Nc for wave numbersq
near 5, 12.5, and 20, and byf q

Zc for q near 10 and 17.5. The
light full lines exhibit f q

xc calculated with Eq.~A7! from the
critical nonergodicity parametersf c(ql 0) @13#. The results
of both approximation theories are in semiquantitative agr
ment, in particular concerning the position and size of
kinks. Thef c(ql 0)-versus-q curves are bell shaped, close
Gaussians@13#. They enter into Eq.~A7! with prefactors
j l (qz/2)25O(q2l ), so that the maximum of the contribu
tion from angular-momentum indexl occurs at someql

max

that increases withl . The separate contributions for differ
ent l are shown as dotted lines in Fig. 2. Thus, the kinks
due to interference effects of thef c(ql 0) with the intramo-
lecular form factorsj l (qz/2). Let us addthat also the
Lamb-Mössbauer factors of the atoms,f q

ac , are well de-
scribed by Gaussians forq,10; in particular, these function
do not exhibit kinks. Figure 2 demonstrates for a case
strong steric hindrance for reorientational motion th
angular-momentum variables forl up to 6 are relevant in
describing the arrested structure, and that the descriptio
the molecule by site-density fluctuations properly accou
for the contributions withl >2.
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S.-H. CHONG, W. GO¨ TZE, AND A. P. SINGH PHYSICAL REVIEW E63 011206
Figure 3 exhibitsf q
xc representative for weak steric hin

drance for the reorientational dynamics. Naturally, the c
tributions due to the arrest of fluctuations of tensor densi
with largel are suppressed. The contributions forl 50 and
l 52 are sufficient to explainf q

Nc , in particular its kink forq
near 12.5. Similarly, the contributions forl 51 and l 53
are necessary and sufficient to explainf q

Zc with its kink for q
near 17.5. The dynamics is strongly influenced by precu
phenomena of the transition from phase II to phase III. T
is demonstrated, for example, by the strong decrease of 1

c

5 f q→0
Zc for the result shown in the lower panel of Fig. 3

comparison to the one shown in the lower panel of Fig.
The two approximation theories under discussion yield d
ferent numbers for the valuezc for the transition point. It is
meaningless to compare different approximations for res
near a singularityzc , referring to the same valuez. It is
more meaningful to compare results for the same rela
distance from the critical point, (z2zc)/zc , as is done in
Fig. 3. Let us mention thatf q

Zc shown by the heavy and ligh
full lines would be somewhat closer, if one had compa
elongations yielding the same value forf 1

c .
Figure 4 exhibits critical Lamb-Mo¨ssbauer factorsf q

xc as a
function of the elongation. The lower panel demonstrates
transition from phase II forz,zc to phase III forz.zc . For
strong steric hindrance, say,z>0.8, f q

Nc is rather close tof q
Zc

providedq is not too small, say,q.3. For z approaching
zc , the f q

Zc fall below f q
Nc . Most remarkable are the wiggle

FIG. 2. Nonergodicity parametersf q
xc ~heavy full lines! for the

molecule’s arrested number-density fluctuations (x5N) and
charge-density fluctuations (x5Z) for the critical packing fraction
w5wc . The elongation parameterz50.80 is representative fo
strong steric hindrance for reorientational motion. The light f
lines are evaluated with Eq.~A7! with the nonergodicity parameter
f c(ql 0) obtained in Ref.@13# from a theory based on a tenso
density description. The dotted lines show the contributions to
~A7! from different angular-momentum indexl . Here and in the
following figures the diameter of the spheres is used as uni
length,d51.
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or even minima of the curves. These are the analogues o
kinks, discussed above in connection with Figs. 2 and
Again, these anomalies can be explained as interference
fects between the geometric structure factorsj l (qz/2)2 and
the nonergodicity parametersf c(ql 0) according to Eq.
~A7!. Let us considerf q

Nc for an intermediate wave vector a
shown for curvesb and c in the upper panel of Fig. 4. Fo
small z, say, z<0.4, thel 50 contribution dominates the
sum in Eq.~A7!, as can be inferred from Fig. 3. Functio
f c(q00) reflects the isotropic part of the arrested fluctu

l

q.

f

FIG. 3. Results as in Fig. 2 but for small elongations which a
representative for weak steric hindrance for reorientational mot
The relative distance from the transition point between phase
and III is (z2zc)/zc50.347. The heavy full line shows the resu
of the present theory forz50.512. The light full line shows the
result forz50.400 based on Ref.@13#.

FIG. 4. Critical nonergodicity parametersf q
xc for the solute as a

function of the elongation parameterz for the wave numbersq
53.4(a), 7.0(b), 10.6(c), 14.2(d), and 17.4(e). The arrow marks
the transition point from phase II to phase III atzc50.380.
6-8
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tions, and hence it is practicallyz independent~as shown in
Fig. 5 of Ref. @13#!. Since j 0(qz/2)2512 1

12 (qz)2

1O@(qz)4# decreases with increasingz, the f q
Nc versusz

curve decreases too; and the decrease is stronger for largq.
The f c(q20) increase from 0 forz50 to values near 0.5 fo
z51 ~as shown in Fig. 5 of Ref.@13#!. Also, the geometric
structure factor increases strongly withz: j 2(qz/2)2

5@(qz)2/60#21O@(qz)6#. The combined effect of both in
creases causes the increase of thef q

Nc-versus-z curve for
largerz. The resulting minimum occurs for smallerz if q is
larger, and this explains the difference between the
curvesb and c. The theory produces the minima, since
accounts for the arrest of tensor-density fluctuations fol
>2.

B. Correlation functions and spectra near the glass transition

Figure 5 demonstrates the evolution of the dynamics
the correlatorsfq

N(t) andfq
Z(t) for intermediate wave num

bers q near the transition from phase I to phase III. T
oscillatory transient dynamics occurs within the short-tim
window t,1. The control-parameter sensitive glassy d
namics occurs for longer times for packing fractionsw near
wc . At the transition pointw5wc , the correlators decreas
in a stretched manner towards the plateau valuesf q

xc as

FIG. 5. Correlatorsfq
N(t) ~solid lines! andfq

Z(t) ~dashed lines!
for two intermediate wave numbersq as a function of the logarithm
of time t. The decay curves at the critical packing fractionwc for
number-density and charge-density correlators are shown as d
lines and marked byN andZ, respectively. Only a few solutions o
glass states are shown forfq

Z(t) in order to avoid overcrowding the
figure. The distance parameter ise5(w2wc)/wc56102x. The full
circles and squares mark the characteristic timests andts8 , respec-
tively, according to Eq.~36! for x51, 2, 3, and 4. The unit of time
is chosen here and in the following figures such that the ther
velocity of the solvent readsv51.
01120
r
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shown by the dotted lines. Increasingw abovewc , the long-
time limits increase, as shown forfq

Z(t) for q57.4 andz
50.80. Decreasingw below wc , the correlators cross th
plateau at some timetb , and then decay towards zero. Th
decay from the plateauf q

xc to zero is thea process forfq
x(t).

It is characterized by a time scaleta , which can be defined
e.g., by fq

x(ta)5 f q
xc/2. Upon decreasingwc2w towards

zero, the time scalestb and ta increase towards infinity in
proportion tots and ts8 , respectively, cited in Eq.~36!. The
figure exemplifies the standard MCT-bifurcation scenar
For small uw2wcu, the results can be described in terms
scaling laws. This was explained in Refs.@22,23# for the
HSS, and the discussion shall not be repeated here.

One can deduce from Fig. 2 that forz50.80 andq>5 the
plateaus for both types of density fluctuations are very cl
to each other:f q

Nc' f q
Zc . The upper two panels of Fig. 5

demonstrate that the dynamics as well is nearly the sa
fq

N(t)'fq
Z(t). This means that forqz.4 and for strong

steric hindrance, the cross correlationsFq
AB(t) are very

small. The reason is that the intramolecular correlation f
tors j l (qz/2) are small, and thus interference effects b
tween the density fluctuations of the two interaction sites
suppressed. Coherence effects can be expected only
smaller wave vectors. For this case, the functions can
understood in terms of their small-q asymptotes, Eq.~7!.

The lower two panels in Fig. 5 deal with weak ster
hindrance. In this case, the charge-density fluctuations
have quite differently from the number-density fluctuation
The most important origin of this difference is the reducti
of the mode-coupling verticesVq,kp

Z relative toVq,kp
N in Eq.

~22b!. For small elongations of the molecule, the effecti
solute-solvent potentials for reorientations are small. The
fore, the f q

Zc decrease strongly relative tof q
Nc for z decreas-

ing towardszc , as is shown in Fig. 4. Upon approachingzc ,
thea-peak strength offq

Z(t) gets suppressed relative to th
of fq

N(t). Within phase II, the charge-density fluctuatio
relax to zero as in a normal liquid. This implies as a prec
sor phenomenon that the time scaleta

Z of the charge-density-
fluctuationa process decreases relative to the scaleta

N for
the number-density fluctuations. Thus, the small-z behavior
shown in the lower two panels of Fig. 5 is due to distu
bances of the standard MCT-transition scenario by
nearby type-A transition.

The correlatorsC1(t) andC2(t) are shown in Fig. 6 for
the critical pointw5wc and for two liquid states near th
transition from phase I to phase III. Forz50.80, the aniso-
tropic distribution of the solvent particles around the m
ecule leads to a stronger coupling to the dipole reorientati
than to the reorientations for the quadrupole, and there
the plateau for the former is higher than for the latter,f 1

c

. f 2
c . A leading order expansion of the solutions of the equ

tions of motion~28! and~32! in terms of the small paramete
Cl (t)2 f l

c leads to the factorization in the critical amplitud
hl and a functionG(t) called theb correlator,Cl (t)2 f l

c

5hl G(t). The latter is the same for all correlation function
It obeys the first scaling law of MCT,G(t)5Ausug6(t/ts)
for s:0. The master functionsg6( t̂ ) are determined byl.
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S.-H. CHONG, W. GO¨ TZE, AND A. P. SINGH PHYSICAL REVIEW E63 011206
They also describe the dynamics of the solvent in the w
dow whereufq(t)2 f q

cu!1 @22#. In particular, there holds

g2(ˆt2)50,t̂250.704, so that both correlatorsCl (t) cross
their plateau at the same timetb5 t̂2ts . The nonlinear
mode-coupling effects require, that the correlators appro
zero roughly at the same time. Thus one understands
general differences between thea processes, which wer
mentioned in the introduction: thea process for dipole re-
laxation is stronger, slower, and less stretched than those
quadrupole relaxation. This finding is in qualitative agre
ment with the ones of the theory based on tensor-den
representation of the structure@14#. There are, however
quantitative differences between the two approximat
schemes. The plateausf 1

c50.905 andf 2
c50.674 are smaller

than the corresponding values 0.943 and 0.835 found in
@14# and the amplitudesh150.19 andh250.40 are bigger
than the corresponding values 0.13 and 0.35 calculated
viously @14#. The timesta

l characterizing thea process shall
be defined byCl (ta

l )5 f l
c /2. They are marked by ope

squares in Fig. 6. The valuesta
155.213105, ta

251.64
3105 for x53 andz50.80 are smaller than those report
in Ref. @14#. The present theory implies a somewhat wea
coupling of the reorientational degrees of freedom of
molecule to the dynamics of the solvent than found ear
@14#. This holds also for the small elongationz50.43. The
approach toward the transition from phase III to phase
leads to a suppression off 1

c , as discussed for thef q
Zc in Fig.

4. The dipole relaxation speeds up forz→zc , as discussed
for the lower panels of Fig. 5. This is reflected by an e
hancement ofh151.60 relative to the amplitudes cited fo
z50.80 but also relative toh250.49.

One can perform lims→02fq( t̃ ts8 )5f̃q( t̃ ) for the solu-

tions of Eq. ~14!, where f̃q( t̃ ) can be evaluated from th

FIG. 6. Reorientational correlatorsCl (t) for l 51 ~dashed
lines! and l 52 ~full lines! for two elongationsz. The correlators
for the critical packing fractionw5wc are shown as dotted line
marked with cl . The distance parameterse5(w2wc)/wc are
20.01 ~faster decay! and 20.001 ~slower decay!. The full circles
and squares mark the corresponding time scalests and ts8 , respec-
tively, from Eq. ~36!. The open circles and squares on the curv
mark the characteristic time scalestb

l andta
l , respectively, defined

by Cl (tb
l )5 f l

c andCl (ta
l )5 f l

c /2.
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mode-coupling functional at the critical point. It obeys th
initial condition f̃q( t̃ )5 f q

c2hqt̃ b1O( t̃ 2b). Functionf̃q( t̃ )
can be considered as a shape function of thea process, and
the result implies the second scaling law of MCT, also
ferred to as the superposition principle:fq(t)5f̃q(t/ts8 ) for
s→02 @26#. Corresponding laws hold for all functions, a
is demonstrated in detail for the HSS in Refs.@22,23#. In
particular, one gets for the reorientational correlators fors
→02

Cl ~ t !5C̃l ~ t̃ !, t̃ 5t/ts8 , ts!t, ~38a!

and this corresponds to thea-scaling law for the susceptibil
ity spectra

x l9 ~v!5x̃ l9 ~ṽ !, ṽ5vts8 , v!1/ts . ~38b!

The initial decay of the master functionC̃l ( t̃ ) is described
by von Schweidler’s law,

C̃l ~ t̃ !5 f l
c 2hl t̃ b, t̃→0, ~39a!

which is equivalent to a power-law tail of the master spe
trum x̃ l9 (ṽ):

x̃ l9 ~ṽ !5hl sin~pb/2!G~11b!/ṽb, ṽ→`. ~39b!

The upper panel of Fig. 7 exhibits thea-process master spec
tra for the reorientational processes forz50.80 and for the
dimensionless longitudinal elastic modulusmq50(t) of the
solvent. The latter can be measured by Brillouin-scatter
spectroscopy. It probes a tensor-density fluctuation forl
50. The von Schweidler law tails describe the spectra
frequencies exceeding the positionṽmax of the susceptibility
maximum by a factor of about 100, as shown by the das
lines. Sincef 1

c. f 2
c and both plateau values are rather larg

one understands from the theory for the leading correcti
to Eq. ~39b! @22# that for decreasingṽ the von Schweidler
asymptote underestimates the spectrum, and does thi
larger values forl 51 than for l 52. For smaller plateau
values, the von Schweidler asymptote may overestimate
spectrum, as is exemplified for the modulus. The lower pa
of Fig. 7 demonstrates that thea processes speed up if ster
hindrance is decreased. As precursor of the transition
phase II, the spectrum for the dipole response is locate
much higher frequencies than that for the quadrupole
sponse. Traditionally, dielectric-loss spectra have been fi
by those of the Kohlrausch lawfK( t̃ )5A exp@2( t̃B)b#. Such
fits also describe a major part of the spectra in Fig. 7,
shown by the dotted lines. The parametersA and B are ad-
justed to match the susceptibility maximum. The stretch
exponentb is chosen so that the spectrum is fitted at h
maximumx̃ l9 (ṽmax)/2. If one denotes the width in log10 v at
half maximum byW, stretching means that this parameter
larger than the valueWD51.14 characterizing a Debye pro
cess,fD( t̃ )5 exp(2 t̃). The upper panel of Fig. 7 quantifie
the general results of the theory for strong steric hindran

s
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x̃19(ṽmax
1 ).x̃29(ṽmax

2 ), ṽmax
1 ,ṽmax

2 and b1.b2. It quantifies

also the fourth property cited in the Introduction,ṽmax
2

,ṽmax
0 . A further general property isb2.b0.

The discussion of power-law spectra is done more con
niently in a double logarithmic diagram as shown in Fig
for normalized dipole-fluctuation-a-process spectra
C̃19(ṽ)ṽmax/f1

c5x̃19(ṽ)ṽmax/f1
cṽ as a function of ṽ/ṽmax.

One notices that there is a white-noise spectrum forṽ below
ṽmax. The high-frequency wing of the Kohlrausch-law
decreases in proportion toṽ2b and underestimates the spe
trum x̃19(ṽ) considerably. Because of the von Schweid
asymptote, which is shown as a dashed straight line,
spectrum exhibits an enhanced high-frequency wing. Dix
et al. @31# made the remarkable observation that their diel
tric spectra could be collapsed onto one master curve if
vertical axis is rescaled byw21 and the horizontal axis by
w21(11w21), wherew5W/WD . In Fig. 8 this scaling is
used and the data for glycerol from Ref.@31# are included.
The spectra for molecules withz50.80 andz50.60, which
are relevant for the description of van der Waals syste
@14#, follow the above-mentioned scaling surprisingly we
This finding appears nontrivial, since the scaling is not

FIG. 7. Susceptibility master spectrax̃9(ṽ) of thea process as

a function of the logarithm of the rescaled frequencyṽ5vts8 ~see
text!. Upper panel: curvesl 51 and 2 refer to the response for th
dipole and quadrupole, respectively, for elongationz50.80. Curve
l 50 refers to the susceptibility master spectrum of the dimens
less longitudinal elastic modulusmq50(t) of the HSS. The dashed
lines exhibit the von Schweidler tails, Eq.~39b!. The dotted lines

are fits by Kohlrausch spectrax̃K9 (ṽ) with stretching exponentsb
50.97, 0.88, and 0.63 chosen forl 51, 2, and 0, respectively, s
that the maximum and the full width at the half maximumW in

decades ofx̃K9 (ṽ) agree with those ofx̃9(ṽ). The position of the

susceptibility maximum isṽmax50.337~0.927, 2.69! and the width
is W51.17 ~1.28, 1.76! for l 51 ~2, 0!. Lower panel: correspond
ing results forz50.43. The stretching exponentb, the maximum

position ṽmax, and the widthW for l 51 (l 52) are b50.79

~0.71!, ṽmax517.5 ~2.11!, andW51.42 ~1.57!, respectively.
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produced by the MCT results of the basic quantitiesfq(t)
@32#. The rescaled spectrum forz50.43 deviates from the

scaling law forw21(11w21)log10(ṽ/ṽmax)>5.
It might appear problematic that the dipole correlator w

calculated within a different approximation scheme than
quadrupole correlator. But it is not difficult to also evalua
C1(t) within the scheme explained in Sec. III D for th
evaluation ofC2(t). Figure 9 presents a comparison ofC1(t)
obtained along the two specified routes. The two results
the small elongationz50.43 are close to each other. Th
discrepancies are mainly due to the 7% difference betw

-

FIG. 8. Double logarithmic presentation of the normalized flu
tuation spectra of the dipole-reorientationa processes,

x̃19(ṽ)ṽmax/f1
cṽ, as a function ofṽ/ṽmax. Here ṽmax denotes the

position of the susceptibility maximum. Following Dixonet al.
@31#, the vertical axis is rescaled byw21 and the horizontal one by
w21(11w21), wherew5W/WD is the ratio of the logarithmic full
width at half maximumW of the susceptibility peak to the sam
quantityWD of a Debye-peak. The open circles reproduce some
the dielectric-loss results for glycerol@31#. The three full lines from
the top are the results forz50.80, 0.60, and 0.43, successivel
although the upper two curves cannot be distinguished within
resolution of the figure. The dotted and the dashed lines exhibit
Kohlrausch fit with the stretching exponentb50.97 and the von
Schweidler law tail, respectively, for thez50.80 spectrum.

FIG. 9. Dipole correlatorsC1(t) for the distance parametere
521024 for three elongationsz. The full circle and square indi-
cate the timests and ts8 , respectively, from Eq.~36!. The dashed
lines are calculated from Eqs.~28! and ~29!. The plateausf 1

c

50.905 ~0.769, 0.376! for z50.80 ~0.60, 0.43! are shown by
dashed horizontal lines. The full lines exhibitC1(t) for the same
states, but evaluated from equations derived in analogy to E
~32!–~35!, and their plateausf 1

c50.907~0.782, 0.402! are indicated
by full horizontal lines.
6-11



n

ro

f
sh

o
an

e

nt

r
-

a

s

ms
ons
he
iti-

m
e

dy-

m-
s is
-

nc-
e
in
is
In

t of

nd
ua-
am-
on
dd

n
-

rtia
the

he

nt
its
in
-
qs.
e of

s
mic
the
aced
m
of
re-

S.-H. CHONG, W. GO¨ TZE, AND A. P. SINGH PHYSICAL REVIEW E63 011206
the two plateau valuesf 1
c . With increasingz, the discrepan-

cies decrease. For the large elongationz50.80, the results
are practically indistinguishable.

C. Structural relaxation versus transient dynamics

Let us introduce Fourier-Laplace transforms of functio
of time, say,f (t). There functions of frequency, sayf (v),
are defined with the conventionf (v)5 i *0

`dt exp(izt)f(t), z
5v1 i0. The equations of motion~17! with the initial con-
ditions from Eq.~5! are transformed into

@v11Vq
2mq~v!#@vFq~v!1wq#2Vq

2Fq~v!50. ~40!

Within the glass, the long-time limits ofFq(t) andmq(t) do
not vanish, i.e., the transformed quantities exhibit ze
frequency poles. One gets, for example,vFq(v)→2Fq

` for
v→0, where the strength2Fq

` of the poles follows from
Eq. ~19!. Continuity of the solutions of the MCT equation o
motion implies that for vanishing frequencies and for vani
ing distances from the transition points,mq(v) becomes ar-
bitrarily large. Hence, combinations likev1 i jq with con-
stantsjq can be neglected compared tomq(v). Therefore, in
the region of glassy dynamics, Eq.~40! can be modified to

Fq~v!2mq~v!wq5 i jq1vmq~v!Fq~v!. ~41!

Let us assume that this equation has a solution, to be den
by Fq* (v), which is defined for all frequencies, so that it c
be back-transformed to a functionFq* (t), defined for allt
.0. Choosingjq properly, Eq.~41! can be written as

Fq* ~ t !2mq* ~ t !wq52~d/dt!E
0

t

dt8mq* ~ t2t8!Fq* ~ t8!.

~42a!

Similar reasoning leads from Eq.~14! to

fq* ~ t !2mq* ~ t !52~d/dt!E
0

t

dt8mq* ~ t2t8!fq* ~ t8!.

~42b!

These formulas have to be supplemented with the MCT
pressions for the kernels

mq* ~ t !5Fq@F* ~ t !,f* ~ t !#, mq* ~ t !5Fq@f* ~ t !#.
~42c!

Equations~42! for the glassy dynamics are scale invaria
With one set of solutionsfq* (t) and Fq* (t), the setfq*

u(t)
5fq* (ut) and Fq*

u(t)5Fq* (ut) also provides a solution fo
arbitrary u.0. To fix the solution uniquely, one can intro
duce positive numbersyq and positive definite matricesyq to
specify the initial condition as power-law asymptotes@16#:

Fq* ~ t !~ t/t0!1/3→yq , fq* ~ t !~ t/t0!1/3→yq , ~ t/t0!→0.
~43!

The theory of the asymptotic solution of the MCT equ
tions for simple systems had been built on the analogue
Eq. ~41! with jq neglected@22#. The present theory extend
01120
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the previous one with the introduction of matrices. It see
obvious that the previous results for asymptotic expansi
hold in a properly extended version. Let us only note t
formula for the long-time decay of the correlators at the cr
cal pointw5wc @22,23#:

Fq~ t !5Fq
`c1Hq~ t0 /t !a$11Kq~ t0 /t !a1O@~ t0 /t !2a#%.

~44!

The exponenta, mentioned above, can be calculated fro
the mode-coupling functional at the critical point. The sam
is true for the plateau valuesFq

`c , and the amplitudesHq and
Kq . The dependence of the solution from the transient
namics is given by the single numbert0. Let us anticipate
that Eq.~44! and similar results can be extended to a co
plete solution. One concludes that the glassy dynamic
determined, up to a scalet0, by the mode-coupling function
als in Eq.~42c!.

Equations~B11! and ~B17! show that the mode-coupling
functionalsFq and F q

ab are specified by the densityr, the
static structure factorSq , the direct correlation functioncq of
the solvent, and the solute-solvent direct correlation fu
tions cq

a , i.e., by equilibrium quantities. They are the sam
for systems with a Newtonian dynamics, as considered
this paper, and for a model with a Brownian dynamics, as
to be used for the description of colloidal suspensions.
particular, the mode-coupling functionals are independen
the particle massesm, mA , and mB . Thus, the glassy dy-
namics of the molecule in the simple liquid does not depe
on the inertia parameters specifying the microscopic eq
tions of motion. The same conclusions on the glassy dyn
ics, which were cited in the Introduction for the basic versi
of MCT, hold for the model studied in this paper. Let us a
that neither the temperatureT nor the interparticle-interaction
potentialsV of the solvent, nor the solute-solvent-interactio
potentialsVa, enter explicitly into the mode-coupling func
tionals. These quantities only enter implicitly viaSq , cq ,
cq

A , andcq
B .

The independence of the glassy dynamics from the ine
parameters is demonstrated in Fig. 10 for four states of
liquid. It is shown that the reorientational dynamics of t
dipole does not change fort.1 even if the mass ratio of the
atoms mA /mB is altered by a factor of 10. The transie
dynamics, which deals with overdamped librations, exhib
an isotope effect. There is no fitting parameter involved
the diagram shown. The scalet0 depends neither on the den
sity of the solvent nor on the elongation parameter, and E
~42! describe the complete control-parameter dependenc
the glassy dynamics.

V. SUMMARY

The MCT for simple systems with a dilute solute of atom
has been generalized to one with a dilute solute of diato
molecules. The derived equations of motion generalize
ones for atoms in the sense that scalar functions are repl
by 232 matrix functions. These generalizations result fro
the description of the position of the molecule in terms
interaction-site-density fluctuations. The numerical effort
6-12
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quired for a solution of the equations is not substantia
larger than the one needed to solve the corresponding e
tions for atomic solutes. This holds in particular for symm
ric molecules where the matrix equations can be diago
ized by a linear transformation to number-density a
charge-density fluctuations. The theory implies that the
namics outside the transient regime is determined, up to
overall time scalet0, by the equilibrium structure. In particu
lar, it is independent of the inertia parameters of the syst

It was shown that the present theory reproduces all qu
tative results obtained within the preceding much more
volved theory based on a description of the solute by ten
density fluctuations. Both theories yield a similar pha
diagram, Fig. 1. The characteristic differences of the reori
tational correlators exhibited for strong steric hindrance
rotations as opposed to weak steric hindrance are obta
here, in Fig. 6, as previously. There are systematic quan
tive differences between the two approximation approac
in the sense that the implications of the cage effect
weaker in the present theory than in the preceding w
@13,14#. The earlier findings on the differences between
spectra for the responses with angular-momentum indel
50, 1, and 2 have been corroborated by separating tha
peaks from the complete spectra with the aid of thea-scaling
law, Fig. 7.

The critical nonergodicity parametersf q
xc have been cal-

culated; these determine the form factors of quasielastic s
tering from the liquid near the glass transition. Contrary
what one finds for atomic solutes, these are not bell-sha
functions of wave numbersq; rather they exhibit kinks; see
Fig. 2. The form factors for some wave numbersq vary
nonmonotonically with changes of the elongation of the m
ecule, Fig. 4. Analyzing these findings in terms of form fa
tors defined for fixed angular-momentum indexl , one can
explain the results as being due to intramolecular inter

FIG. 10. Dipole correlatorsC1(t) for a dumbbell of two fused
hard spheres of diametersd and distancezd between the center
moving in a liquid of hard spheres with diameterd for a distance
parameter (w2wc)/wc52102x. The dashed lines reproduce th
results from Fig. 6 and refer to a symmetric molecule with mas
of the two atoms being equal to the massm of the solvent particles
mA5mB5m. The full lines exhibit the results for an asymmetr
dumbbell withmA510m, mB5m. In the main frame the results fo
different states are successively shifted horizontally by a factor
in order to avoid overcrowding. The inset shows the transient
namics on a linear time axis.
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ence effects demonstrating that the theory accounts for re
entational correlations with angular-momentum indexl
>2.

It was shown that thea-relaxation spectra for dipole re
orientations with strong steric hindrance obey the scaling
proposed by Dixonet al. @31# within the window and within
the accuracy level considered by these authors. There i
fitting parameter involved in the construction of Fig.
which demonstrates this finding for the two elongation p
rametersz50.60 and 0.80. Thus, it is not justified to use t
cited empirical scaling as an argument against the applica
ity of MCT for a discussion of dielectric-loss spectra.

ACKNOWLEDGMENTS

We thank M. Fuchs, M. Sperl, and Th. Voigtmann f
many helpful discussions and suggestions. We are gratef
A. Latz and R. Schilling for constructive critiques of ou
manuscript. S.-H.C. acknowledges financial support from
pan Society for the Promotion of Science for Resea
Abroad. This work was supported by Verbundprojekt BMB
03-G05TUM.

APPENDIX A: TENSOR-DENSITY REPRESENTATIONS

Following the conventions of Refs.@13# and@14#, normal-
ized tensor-density fluctuations shall be used by decomp
ing the molecule’s position variable in plane wav
exp(iqW•rWC) for the center of massrWC and in spherical harmon
ics Yl

m(eW ) for the orientation vectoreW :

r l
m~qW !5 i l A4p exp~ iqW •rWC!Yl

m~eW !. ~A1!

The molecule-solvent interactions are specified by a se
direct correlation functions

cl ~q!5^rqW 0
* r l

0 ~qW 0!&/~rSq!; qW 05~0,0,q!. ~A2!

The structure dynamics is described by the matrix of corre
tors, defined by

f l k~qm,t !5^r l
m~qW 0 ,t !* rk

m~qW 0!&. ~A3!

Since the position vectors of the interaction sites can
written asrWa5rWC1zaeW , the Rayleigh expansion of the expo
nential in Eq.~1! yields the formula

rqW 0

a
5(

l

A2l 11 j l ~qza!r l
0 ~qW 0!. ~A4!

Substitution of this expression into Eq.~3! leads, with Eq.
~A2!, to an expression connecting the direct correlation fu
tions cq

a with cl (q):

(
b

wq
abcq

b5(
l

A2l 11 j l ~qza!cl ~q!. ~A5!

Substitution of Eq.~A4! into Eq.~4! leads, with Eq.~A3!, to
the expression of the site-density correlators in terms of
tensor-density correlators:

s

0
-

6-13
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Fq
ab~ t !5(

l k
A~2l 11!~2k11! j l ~qza! j k~qzb!f l k~q0,t !.

~A6!

For the long-time limits of the correlatorsFq
ab(t) one gets a

combination of the nonergodicity parametersf l k(qm)
5f l k(qm,t→`). If one uses the diagonal approximatio
f l k(q,m)5d l kf (ql m), one can write

Fq
ab~ t→`!5(

l
~2l 11! j l ~qza! j l ~qzb! f ~ql 0!.

~A7!

Substituting the Rayleigh expansion of Eq.~1! into Eq.
~34a!, one can express the pair modes in terms of th
formed with tensor-density fluctuations:

Aa~kW ,pW !5A4p(
l m

j l ~kza!Yl
m~kW !@r l

m~kW !rpW /ANSp#.

~A8!

Therefore, the overlaps of the forces with the pair modes
be expressed as sums of the corresponding quantities c
lated in Ref.@13#. One finds for the mode-coupling coeffi
cients in Eq.~35!

V2
ab~k!5@k2rSk /2p2#(

cd
~wk

21!acDc~k!Dd~k!~wk
21!db.

~A9a!

Here one gets fora5A, B, or C

Da~k!5
1

12 (
l J

~21!1/2(l 1J)~2l 11!A2J11 j l ~kza!cJ~k!

3@J~J11!162l ~ l 11!#S 2 l J

0 0 0D
2

, ~A9b!

where the last factor denotes Wigner’s 3-j symbol.

APPENDIX B: MODE-COUPLING COEFFICIENTS

Mode-coupling equations based on a description of
molecules by site-density fluctuations have been derive
Ref. @18# by extending the procedure used originally f
atomic systems@26#. But the reported formulas@18# do not
seem appropriate, since they do not reduce to the ones
tagged particle motion if the limit of a vanishing elongatio
parameterz is considered. Therefore, an alternative deriv
tion will be presented which starts from the theory develop
by Mori and Fujisaka@33# for an approximate treatment o
nonlinear fluctuations. The application of this theory will b
explained by rederiving the equations for the solvent bef
the ones for the solute are worked out.

1. The Mori-Fujisaka equations

Let us consider a set of distinguished dynamical variab
Aa ,a51,2, . . . ,defined as functions on the system’s pha
space. The time evolution is generated by the Liouvilli
01120
e

n
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e
in

for

-
d

e

s
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Aa(t)5 exp(iLt)Aa . Using canonical averaging to defin
scalar products in the space of variables, (A,B)5^A* B&, the
Liouvillian is Hermitian. The goal is to derive equations
motion for the matrix of correlatorsCab(t)5„Aa(t),Ab….
The initial condition is given by the positive definite matr
gab5(Aa ,Ab). The theory starts with a generalized Fokke
Planck equation for the distribution functionga5Pad(Aa
2aa), a5(a1 ,a2 , . . . ). It is assumed that the time scale
for the fluctuations of theAa and their products are large
than those for the Langevin fluctuating forces. The spectr
the latter can then be approximated by a constant ma
Gab . It is assumed, furthermore, that theGab are indepen-
dent of the distinguished variables, and that the equilibri
distribution of the latter is Gaussian:

^ga&5C expS 2
1

2 (
ab

aagab
21ab* D . ~B1!

In the cited Fokker-Planck equation there occurs the stre
ing velocity va(a) given by

va~a!^ga&5^Ȧa* ga&5kBT(
b

]

]ab
^$Aa* ,Ab%ga&.

~B2!

The Fokker-Planck equation is now reduced by project
out the subspace of the distinguished variables. There
pears the frequency matrix specifying the linear contribut
to the streaming term,

Vab5(
g

~Aa ,LAg!ggb
21 . ~B3!

The nonlinear contributions enter as combination

f a5E dava~a!ga2 i(
b

VabAb . ~B4!

They determine the relaxation kernel as

Mab~ t !5(
g

~ f a~ t !, f g!ggb
21 . ~B5!

The time evolution is generated by the reduced Liouvilli
L 85QLQ, f a(t)5 exp(iL 8t) f a , where Q is the projector
on the space perpendicular to the one spanned by the di
guished variables. The result, which is equivalent to E
~2.15! in Ref. @33#, reads

] tCab~ t !52(
g

F ~ iVag1Gag!Cgb~ t !

1E
0

t

dt8Mag~ t2t8!Cgb~ t8!G . ~B6!

2. MCT equations for simple systems

To get a description of slowly varying structural fluctu
tions, the original reasoning of MCT shall be adopted, and
6-14
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distinguished variables the density fluctuationsrqW and the
longitudinal current fluctuationsj qW5(kvk,z exp(iqW•rWk) will
be chosen. The variable label of the preceding subsec
consists of two bits,a5(l,qW ), l51,2, so thatA1qW5rqW ,
A2qW5 j qW . Notations are the same as those of the first pa
graph of Sec. II. One getsg1qW 1qW5NSq , g2qW 2qW5Nv2,
V1qW 2qW5q, V2qW 1qW5Vq

2/q, and all the other elements of th
matricesg and V are zero. Because of translational inva
ance, one getsClqW mkW(t)50 unlessqW 5kW , and rotational in-
variance implies thatClqW mqW(t) depends on the modulusq
only. The same holds for the matricesG andM, so that Eq.
~B6! reduces to a 232 matrix equation withq appearing as
a parameter. SinceLrqW is an element of the distinguished s
of variables, the kernelsGab and Mab(t) vanish unlessa
5b5(2,qW ). The latter shall be denoted byGq and Mq(t),
respectively. Equation~B6! can then be reduced to the equ
tion of motion for the normalized density correlatorfq(t)
5C1qW 1qW(t)/NSq :

] t
2fq~ t !1Gq] tfq~ t !1Vq

2fq~ t !1E
0

t

dt8Mq~ t2t8!] t8fq~ t8!

50. ~B7!

The application of the Mori-Fujisaka formalism can be su
marized as follows. The relaxation kernelVq

2mq(t) of the
exact Eq.~14! is approximately split into a white noise con
tribution 2Gqd(t) and a remainderMq(t), where well de-
fined formulas for the two contributions are available. In th
paper, the kernelGq is neglected and Eq.~B5! for the kernel,

Mq~ t !5~ f qW~ t !, f qW !/Nv2, f qW5 f 2qW , ~B8!

shall be approximated further.
If one writesa1qW5 r̃qW and a2qW5 j̃ qW , one can denote the

equilibrium distributionw(a)5^ga& for the solvent variables
as

w~a!5C expH 2~1/2N!(
qW

@~12rcq!r̃qW r̃qW *

1~1/v2! j̃ qW j̃ qW
* #J . ~B9!

This is used to derive from Eqs.~B2! and ~B4!

f qW52 i ~rv2/N!(
kW

~kW•qW /q!ckrkWrqW 2kW1d f qW , ~B10!

whered f qW denotes a term whose contribution to the mem
kernel turns out to be irrelevant for the structural relaxat
processes, and therefore shall be neglected. The rema
task is the evaluation of averages„rkW(t)rpW (t),rkW8rpW 8…, where
the time evolution is generated by the reduced Liouvillia
Here the original MCT ansatz is used:„rkW(t)rkW8…„rpW (t)rpW 8…

1(k↔p). As a result, one getsMq(t)5Vq
2mq(t) with the

well known expression for the mode-coupling functional
Eqs.~15!:
01120
on

a-

-

y
n
ing

.

Fq@ f̃ #5~r/16p3q4!E dkWSqSkSp@qW •kWck1qW •pW cp#2 f̃ k f̃ p,

~B11!

with pW 5qW 2kW .

3. MCT equations for the solute molecule

It is straightforward to generalize the preceding derivat
to systems with a diatomic solute molecule provided the
ter is considered flexible. Therefore, let us use this mod
cation of the problem. It will be assumed that the kine
energy of the molecule isSa(ma/2)vW a

2 and that there is a

binding potentialVf l (urWA2rWBu) between the two interaction
sites. The exact Eq.~17a! remains valid with the frequency
matrix replaced by that of the flexible moleculeVq

f l 2 . It is
defined via Eq.~17b! with the simple velocity correlator
Jq

f l ab5dab(kBT/ma).
The formulas of Sec. B 1 shall be applied with the e

tended set of densities (rqW ,rqW
A ,rqW

B) and the corresponding

longitudinal currents (j qW , j qW
A , j qW

B). Thus the index consists o

three bitsa5(t,l,qW ), wherel51,2 discriminates between
densities and currents, andt5O,A,B indicates solvent, atom
A, and atomB, respectively. In the infinite dilution limitN
→`, the equations for the solute do not directly couple
those for the solvent. Therefore, Eq.~B7! remains valid and
one gets a modification of Eq.~17a! for the solute:

] t
2Fq~ t !1Gq] tFq~ t !1Vq

f l 2Fq~ t !

1E
0

t

dt8Mq~ t2t8!] t8Fq~ t8!50. ~B12!

The relaxation kernel reads

Mq
ab~ t !5„f qW

a
~ t !, f qW

b
…~mb /kBT!, f qW

a
5 f a2qW . ~B13!

The determination of the Gaussian distribution of the e
tended distinguished variables requires the inversion of
333 matrix (At1qW ,As1qW). Making use of the infinite dilu-
tion limit N→`, one gets

^ga&5wO~a!expH ~1/2!(
qW

(
ab

@~2r/N!dabcq
ar̃qW r̃qW

a*

2~wq
21!abr̃qW

a
r̃qW

b* 2~ma /kBT!dabj̃ qW
a
j̃ qW
b* #J , ~B14!

where wO(a) is the distribution for the solvent variable
given by Eq.~B9!. This expression is used to work out th
fluctuating force as explained in connection with Eq.~B10!:

f qW
a
52 i ~r/N!~kBT/ma!(

kW
@~qW 2kW !•qW /q#ck

arkW
a
rqW 2kW1d f qW

a .

~B15!
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As above, the contributions due tod f qW
a are neglected and th

remaining pair correlations are factorized. This leads to

Mq~ t !5Vq
f l 2mq~ t !, ~B16!

where the functional for the kernel in Eq.~18a! reads

F q
ab@ f̃, f̃ #5q22(

c
wq

ac~r/8p3!E dkW~qW •pW /q!2Spcp
ccp

b f̃ k
cbf̃ p ,

~B17!

with pW abbreviatingqW 2kW . Neglecting the friction termGq in
Eq. ~B12!, the MCT equations~17! and ~18! are derived for
the flexible molecule.
a,

t

ia,

-

01120
Obviously, a theory for a rigid molecule can be obtain
from one for a flexible molecule only within a quantum
mechanical approach. One has to consider the case w
excitation energies for translational and rotational motion
small compared to the thermal energy, while the energies
vibrational excitations are large. Let us assume that the
mulas can be obtained by replacing all equilibrium avera
in the preceding equations with the correct quantum m
chanical ones, where the latter can be evaluated for the c
sical molecule model with five degrees of freedom. Th
amounts to replacing structure functions with the class
quantities, in particular the replacement ofVq

f l by Vq .
Thereby Eq.~B12! produces Eqs.~17!.
.
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